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Summary

Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The
nonlinear simulations are usually based on multidimensional computational fluid dynamics (CFD) method-
ologies and tend to provide high resolution results that show the fine detail of the flow. Consequently, these
simulations are large, numerically intensive, and run much slower than real-time. The linear simulations
are usually based on large lumping techniques that are linearized about a steady-state operating condition.
These simplistic models often run at or near real-time but do not always capture the detailed dynamics of the
plant. Under a grant sponsored by the NASA Lewis Research Center, Cleveland, Ohio, a new method has
been developed that can be used to generate improved linear models for control design from multidimensional
steady-state CFD results. This CFD-based linear modeling technique provides a small perturbation model
that can be used for control applications and real-time simulations. It is important to note the utility of the
modeling procedure; all that is needed to obtain a linear model of the propulsion system is the geometry and
steady-state operating conditions from a multidimensional CFD simulation or experiment. This research
represents a beginning step in establishing a bridge between the controls discipline and the CFD discipline
so that the control engineer is able to effectively use multidimensional CFD results in control system design
and analysis.

1 Introduction

The development of inlet models for high speed propulsion systems is important because of the current
interest in high speed air-breathing propulsion systems. Modeling of these systems is difficult, because the
complex physical processes are represented by nonlinear partial differential equations (PDE). An accurate
plant model is required to develop a control system for the plant; the more accurate the model, the better
the control design. Typically these models are either based on traditional propulsion control models or CFD
models.



Traditional propulsion control models typically utilize a large lumping technique for the spatial derivatives
so that the propulsion system is represented by a set of nonlinear ordinary differential equations (ODE).
These equations are often linearized about a steady-state point so that the control model is linear. Methods
based on this linear ODE approach have been developed for propulsion systems, some of which are: the Cole-
Willoh model [1}], the Martin model [2], the Barry models [3], circuit models [4], and the Laplace transform
of the Green’s function method [5] [6]. Unfortunately these models are often difficult to implement, do not
always capture the nonlinear dynamics of the system, and are not typically used for multidimensional flows.

Accurate nonlinear models of complex flows are usually obtained from CFD codes [7] [8]. These models
can to some degree predict the behavior of large perturbations in the flow field, including unstart, buzz,
turbulence, boundary layer growth, et cetera. Typically these CFD models are based on a large number of
nodes which can then be used in a finite difference method to produce a large system of nonlinear equations.
However due to their nonlinearity and large size, these models require large amounts of computational time
and therefore are not suitable for controls analysis and design.

An effective propulsion system model for control system design must adequately capture the dynamics
of the system but also be of small order. CFD models fulfill the first requirement, and traditional controls
models fulfill the second requirement. Therefore, a method that is based on both ideas might provide a
reasonable model for controls applications. This concept has already been illustrated for one dimensional
CFD models [9]. In that paper, the development of a CFD-based linear modeling method combined with
model reduction is used to model the inviscid flow of an axisymmetric one dimensional mixed compression
inlet.

In this paper, the CFD-based linear modeling method is applied to the inviscid flow of an axisymmetric
multidimensional mixed compression inlet. It should be noted that the whole inlet needs to be modeled in
order to accurately capture transient behavior. The CFD code PARC is used to obtain the steady-state and
transient data. The inflow boundary condition is assumed to be supersonic, the outflow boundary condition
13, assumed to be subsonic, and the Mach number at the exit is used as the boundary condition input.
The next section describes the multidimensional CFD model development which is the basis for the linear
model of the inlet; this includes the governing equations, the development of the split flux model, and the
development of the boundary conditions. Then in section three, the linear model is derived by implementing
linearized methods of the previous section; an input and various outputs are also developed in this section.
A summary of the model reduction method and calculation of the associated error bounds follow in sections
four and five. In section six, an application of the method is illustrated on a mixed compression inlet, and
a conclusion follows in section seven.

2 CFD Model Development

2.1 Governing Equations

The dynamics of an internal flow propulsion system are often represented by the nonviscous multidimen-
sional Euler equations. The conservative form of these equations is defined by Hirsch [10] as:

Conservation of Mass:

R

Conservation of Momentum:
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Conservation of Energy:
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The number of equations in the nonlinear system of partial differential equations is 5N; No N3 where Ny, Na,
and N3 are the number of grid points in the z, ¥, and z-directions. The two dimensional form of the Euler
equations is obtained by removing the third momentum equation and the spatial derivatives with respect to
z in the remaining equations. Throughout this paper the three dimensional form of the equations will be
implemented.

If the partial derivative terms are expanded, the conservative form of the equations can be rewritten as:

ow  of (W) 97 (W) , I (W)

ot Oz Sy 9z 0 (2.4)

where the vector components, @, f (@), ¢ (%) and ('), are defined below.

State vector:
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pw mg
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The total energy per unit volume, ¢, is defined as, e = pE =p | e+ — ) where e is the internal
energy per unit mass.
Flux vectors:
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For a perfect gas the static pressure can be defined as:

p = (-1 (c-L£7?)
= (0-D(e-£(@- ) (2.9)
_ (7_1)<5_pu2+v22+w2>

where ¥ = ui + v;+ wE, and the flux vectors may be rewritten in terms of the state variables. Since the
flux vectors are homogenous functions of degree one in %’, they can be written as:

—

F (@) = Aw
g () = BW (2.10)

(W) = Cw

Now the derivative of the first flux vector with respect to = can be represented in quasi-linear form by the
following, R
of () ow
_— = A 2.11
Ox oz (2.11)

where A is the Jacobian of the flux vector,

AT (™)
A= —Fest (2.12)

The Jacobians of the other flux vectors may be computed in the same manner. The substitution of the
Jacobians into equation (2.4) results in the following partial differential equation,

ow ouw o ou ,
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where the Jacobians are defined as:
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The characteristics, or local eigenvalues, of the first Jacobian are equal to:

A123 = u
M = u-+tc (2.17)
s = u-—c

the characteristics of the second Jacobian are equal to:

Al23 = v
M = v+ec (2.18)
As = v—c

and the characteristics of the third Jacobian are equal to:

A2z = w
A = wHe : (2.19)
/\5 = w-—c¢

Note that c is the speed of sound. A system of ordinary differential equations that approximate equation
(2.13) can be obtained by replacing the spatial derivative terms with finite difference expressions; then
the system of equations may be integrated numerically to obtain the flow field solution. In order for the
overall system to be numerically stable, the direction of the characteristics must be taken into account
when the spatial derivatives are replaced. For example in the axial direction when the flow is _s)upersonic,

the characteristics are all positive, and one finite difference expression can be used for the —— term. If
thi flow is subsonic, the signs of the characteristics are mixed, and a single finite difference expression for

Y will create an unstable set of ordinary differential equations. If the Jacobians of equation (2.13) are
spﬁt according to the signs of the characteristics, then different finite difference expressions for the spatial
derivatives can be used for each of the positive and negative terms. The next section illustrates how to split
the system into its positive and negative parts.



2.2 Split Flux Model

The split flux method detailed in references [10] and [11] is summarized in this section. The split flux
method separates a flux vector into subvectors which correspond to the positive and negative characteristics
of the Jacobian. The split flux model can be written as the following equation,

ow  off (@) 0 (@) , 0g* (W) , 99" (W) , OWF (W) | Ok ()
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and the positive and negative subvectors can be calculated from the following;:
@ = arw
-
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@) = ot

Substitution of equation (2.21) into the split flux model equation (2.20) produces the following result.
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The positive and negative Jacobians satisfy,
A = At 4 A-
B = BY+B™ (2.23)
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and are calculated from:
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The right eigenvectors of A, B, and C are defined as:
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and the matrices AL, AT, and AF can be defined as:
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There are a variety of splittings that can be used for A. As long as the characteristics of AT and A~ satisfy
A = AT 4+ A, the splitting is valid. Once the system, equation (2.22), is split into its positive and negative



Jacobians, a different finite difference expression can be used to approximate the spatial derivatives for each
Jacobian. The spatial derivatives associated with the positive Jacobians are discretized with a backward
difference operator:

— — —
OWijk _  Wijk — Wi-ljk
Oz Tijk = Tiz1,5k
— — —
O 4k Wighk ~ Wij—1k
GUijk _ (2.31)
Jy Yigk — Yi,j—1,k
— — —
OWijk _  Wijhk— Wijk—1

9z Zi,jk — Zigk-1
and the spatial derivatives associated with the negative Jacobians are discretized with a forward difference
operator: :

a-—) - -
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The grid point is denoted by the subscript ¢, j, k. The approximations for the spatial derivatives are substi-
tuted into equation (2.22) which results in the following equation at each grid point of the system.
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This can be rewritten as:
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Equation (2.34) represents the dynamics of the internal grid points of the CFD model; there are still boundary
conditions that must be satisfied at the following locations:

i = j=k=1

i = N
j = Ny
k N3



where Ny, N, and N3 are the total number of grid points in the x, y and z-directions. The boundary
conditions are developed in the next section.

2.3 Boundary Conditions

Boundary conditions can be categorized as either physical or numerical. Numerical boundary conditions
correspond to characteristics leaving the domain; therefore they are determined from the interior grid points.
The physical boundary conditions correspond to characteristics entering the domain and cannot be deter-
mined from the interior grid points; therefore, they must be specified. The numerical treatment for the
boundary conditions follows in the next two sections.

2.3.1 Wall Boundary Conditions

The boundary conditions at the y and z-planes are implemented using the method of non-reflective
boundary conditions [10]. When using this method, the physical boundary conditions are set equal to zero,
and the numerical boundary conditions are determined from the interior grid points of the computational
grid. Since the characteristics at the boundary are propagating in one direction, one finite difference equation
can be used to replace the spatial derivative. The following is a general equation that can be used at these
boundaries (j = 1,5 = Na,k =1, and k = Nj3) for the boundary conditions.

— + + -
0 = Wik Ak — Alik Aiik —
= & Wi-1,4,k + - Wik
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(2.35)
AT LETew L ETeD
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At the boundaries, Ag,, and Ags,, are determined from the numerical boundary conditions; where as, At and
A~ are determined from the positive and negative Jacobians from the split flux method.
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For j =1, the spatial derivative %1-/'— is replaced with a forward finite difference, equation (2.32), hence
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Bt =0

B~ = Kahs, K1
o ow _ .
Likewise, for k=1, 52 As,., Ct, and C~ become the following:
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For 3 = N3, the spatial derivative 3_y is replaced with a backward finite difference, equation (2.31), hence
—
Ag,. must have all positive characteristics. Therefore, aa—Z, As,., Bt and B~ become the following:
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and for k= Ng, %—g—, As,., CT, and C~ become the following:
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The coeflicients for the wall boundary condition equations listed in section 3.2 will be computed from the
BT, B, C*, and C~ terms defined in the above equations.

2.3.2 Inflow and Outflow Boundary Conditions

Compatibility relations with time-differenced physical boundary conditions is the method used for the
treatment of the inflow and outflow boundary conditions. Using this method, the incoming characteristics are
replaced with specific physical boundary conditions so that only information transmitted from the interior
is maintained. The general development for the treatment of the boundary conditions as taken from Hirsch
[10] and Chakravarthy [12] follows.

If the governing PDE, equation (2.4) from section 2.1,
ow of(w) og(w) oh(w)_
at Ox dy 0z

is rewritten in terms of the characteristic variables for the time derivative, the characteristic -variables can

be split into the incoming physical characteristics, wf, and the outgoing numerical characteristics, w.
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5t | 2 P |4 T P | Byt s
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0

)N
=0 (240

The partitioning of the K; matrix shown here will be discussed in detail in section 3.3.1. Note that the
position of the physical and numerical characteristics will be different for different types of boundary condi-
tions. With this boundary condition method, information transmitted by the characteristics to the interior is
discarded. Therefore, the incoming characteristics are set equal to zero by replacing them with the physical
boundary condition, By, = 0, as follows.

0 [W } . { ()" ] AT, [ ()" } 07, [ (5"

9 cZh = 0 (241
9 | By, 0 Oz 0 dy 0

1
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Converting back to conservative variables and replacing be with
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Now the implementation of the time-differenced boundary condition is performed. This is done by taking
the derivative of By, with respect to time and replacing the derivative by a finite difference equation.

OBy _ 0By 0%
ot 0w ot
Bie (W) — B (W) = S0 (wnt ) (2.43)
Bio (W) = Bu (W) + O0ke ()

Now By (w™+1) is set equal to zero, because it has replaced the incoming characteristic.
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Substitute the last line of (2.44) into equation (2.42).
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Let L be defined as:

L= ( ()" (2.46)
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Substitute (2.46) and (2.47) into equation (2.45) and simplify.
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Since the incoming characteristics have been zeroed out and replaced with physical boundary conditions, the
spatial derivative can be replaced with one finite difference expression. At the cowl lip the spatial derivative
with respect to x is replaced with a forward difference equation (2.32), and at the compressor face it is
replaced with a backward difference equation (2.31). For the spatial derivatives in the other directions, they
are replaced after Bt and C* have been defined either from the boundary conditions or from the split flux
method, as shown in the following equations.

Cowl lip boundary condition:

-—
Wik | 11 Ak Ak — Blix
_ Ll L L —_— . — . — M .
+ Ly Lo U245k U5,k U1,i—1,k
ot T2,5,k — T1,5,k 2,5,k — T1,5,k Y5k — Y1,5-1,k

Bf. Br. B7.
1,5,k 1,5,k - 1,5,k —
+ 7 - ULkt " U 11,k
YLk —YL5-1,k  YLi+Lk ~ Y5k YLi+Lk — YLk

(2.49)

Cr. Ct. Cr.

1,5,k — 1,5,k 1,5,k —

——e Y k1 + - U4k
21,5,k 7™ #1,4,k—1 21,5,k — #1,5,k—1 21,5,k+1 — #1,5,k

Cr., B

1,5,k - -1 L2,

T 1,7,k+1 = Ll 0 ° :I
21,5,k41 7T 21,5,k

Compressor face boundary condition:

3_’1?1\/ ik Apn, Apn, ;
1,ds -1 Ni,5,k — Ny,7,k —
— - tLi L : U Ny Gk = > UN, ~1,4,k

TNyGk — TNL-1,5,k TNk — TNi—-1,5,k

+ +

BRik — BRik Bn,ik .
- U N, j—1,k T — U Ny,j,k
YNy gk = YNy, -1,k YNy Gk —YNyi-1,k YNy, j+1,k — YNy, 5,k

N N (2.50)

BN gk — O ik — CNy ik
U Ny j+1,k U Ny,jk—1 T+
YNy j+1k — YNy gk ZNy ik — 2Ny g k—1 ZNy k= 2Ny, gk—1

Ok T Cvigk _ — _f 0
- N5k Uniksl | =L _p
ZNi,j,k+1 = ZNy,j,k ZN1,g,k+1 ~ ZNy,5.k be

The next section develops the linear model using the split flux technique from section 2.2 and the boundary
condition methods from section 2.3.

3 Linear Model Development

3.1 Small Perturbation Model

For a small perturbation model, the states, inputs, and outputs of a nonlinear system are assumed to
be the combination of a steady-state value and a small time dependent perturbation as shown below in
equations (3.1) through (3.3).

States:

X=X, +6X (3.1)
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Inputs:

U=U,+6U (3.2)

Outputs:

Y =Y. +6Y (3.3)

The small perturbation model is only valid when operating within a small region around the steady-state
value; once outside this region, the linear model is no longer an accurate representation of the nonlinear
system. In other words, the farther the nonlinear model moves away from the operating point, the less
accurate the linear dynamic response.

Because of the large number of equations in the CFD-based model, it is convenient to describe the small
perturbation model in state space format; this also facilitates the placement of the inputs and outputs for
the system.

%6? = A§X +B§U

§Y = C§X +D6U (3.4)
The A, B, C, and D matrices are defined as follows:

A = system matriz
B = input matriz (3.5)
C = output matric

D = input/output matriz

The data needed for the calculation of these matrices is obtained from a steady-state operating point of the
propulsion system model. The contents of these matrices are developed in the following sections.

3.2 System Matrix

The system matrix for the small perturbation model is generated by applying equation (2.34) to each
grid point of the propulsion system with the Jacobians evaluated at the steady-state operating point. For
the interior grid points, equation (2.34) can be rewritten as follows:

367[)1',],]9

ot = di kb UWi1,5k +big k0 Wi 1k + i k8 W k-1 + 85 5,60 W jy ko (3.6)

— - —
+€3,5,k0 Wit1,5,k + € k0 Wi g1,k + £ k0 Wi g k1

where the coefficients on 6% are defined as:

— + J—
o i,k A7k Biik
a5k = T . . . .. ..
i+l5k — Tigk  Tigk —Ti-1,5k  Yij+1,k —Yijk
+ - +
— B":rjxk + Ci,j,k _ Ci,j;k
Yigk —Yij—Lk  Zigk+l — Zijk  Zijk = Zijk—1
Bt
1,5,k
bijk =
Yigk — Yi,j—-1,k
~Bijk
Cijk =

Yig+1,k — Yi 4.k

14



dijk

€i g,k

£i5.k

8i,j.k

+
Alik
a:i,jrk - mi—l,j,k
_Ai,j,k
Tit1,5k = Lijok
—Clik
Zigk+1 — Zi4.k
+
1,9,k
zi:jyk - zi)jyk_l

This can be written in the following compact form:

If the ¢, j, and k indices are incremented in the following manner (((k =1, - -

6? is defined as:

d — —
25X = A
dt‘SX 65X

—

Su11,1
—

51,2

—
57U 1,1,N,
—
oUWy,

U 1,2,N,
6X = ,

s
bu 1,Nz,1

5%
u_l;Nz,Ns
0911

The banded structure of the A matrix is shown below:

fa f c

5T,
| 0 U N;,N;,N3 |

g a f c
g a f c
g a f
b g a f
b g a f
b g a
d b g
d b
d b

f
a

g

f

a
g

f
a

aNS)j

(3.7)

(3.8)

1,"',N2)i=1,"',N1)

(3.9)

(3.10)

The size of the system matrix is 5N; NgN3 by 5N; No N3. There may be some confusion between the system
eigenvalues, which are the eigenvalues of the A matrix, and the local eigenvalues, which are the characteristics
of the Jacobians. The local eigenvalues may be positive or negative depending on the flow conditions, but
the eigenvalues of a stable continuous time linear model must have negative real parts. Therefore, all the
eigenvalues of A must have negative real parts. The small perturbation model will be stable when the spatial
derivatives of equation (2.22) are properly discretized according to the local eigenvalues.
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The procedure for the development of the system matrix must be modified when the boundary conditions
are taken into consideration. The linearized equations needed for the wall boundary conditions and inflow
boundary conditions will be developed below. The linearized equations for the outflow boundary conditions
are listed, but their development is detailed in section 3.3.

3.2.1 Wall Boundary Conditions for the System Matrix

The wall boundary conditions are implemented as modifications to the system matrix following the

method developed in section 2.3.1. With i =2,---, Ny — 1, the equations and coefficients are shown below.
—
0bu 31,1 d 5T 57 R T 5T £ —
- Gl wi-1,1,1 +a31,10 W41,1 +€5,1,10 Wit1,1,1 €116 u 01+ 6110012 (3.11)
At
2,1,1
d11 =
Z51,1 — Ti-1,1,1
— + — —
aj1, = Aiiq Alva Biia Ciia
e Tit1,1,1 —Ti1,1 Til,1 —Ti-1,1,0 Y521 — Y11 %46,1,2 — 24,1
_ A
€11 =
Ti+1,1,1 — T3,1,1
_ "B
Ci1,1 =
Yi2,1 —VYi1,1
—C-
,1,1
fii1 =
21,2 = 21,1
8571 1,k — — —
i di1k0uwi 1,16+ i1, k0 Wi k-1 + 851,60 Witk (3.12)
— — - —
te, 160U i1,k Ci k0 Wik + B 1 kb Wi k1, K=2,---,Ng—1
At
1,1,k
diix =
Ti1k — Ti-1,1,k
+
gilk = ———Ci’l’k
’Ll ’ -
2i, 1,k — %i,1,k—1
- + - - +
aiip = Ak _ Al k Bk Cirk Cive
” Tit1,Lk — T,k Tilk — Zim1,1,k Y2k — YLk ZiLk+l — ZiLk  2iLk — Zi1,k-1
_ —Ak
€1k =
ZTit1,1,k — Ti,1,k
—B-
7,1,k
Citk = —————
Yi 2,k — Vil k
—-C-
1,1,k
fiie =

Zi1,k+1 — 21,k
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3(571 1,N: — — —
—6—%3 = di1, N0 W11, Ns + 80,1, N0 W i1, Na—1 + 35,1, NS Wi, 1,N,

— —
+€;1, N0 Wit1,1,N; +Ci,1,Ns6 W32, Ns

(3.13)

(3.14)

(3.15)

+
d _ Ai,l,N3
‘i,l,Ns -
Ti,1,Ns — Li—1,1,Ns
+
giin, = Ci,l,N3
i,1,N3 —
” 231,N3 — 2i,1,N3—1
— + - +
a’l: 1.N. — A’i,l,Na _ Ai:I)NS + Bi,l,Na . C‘l:,l,N:;
A
" Z44+1,1,Ns — Z4,1,N; Z4,1,N3 — £i—1,1,N3 Yi,2,Ns — Yi,1,N; 23,1,N3 — Z4,1,N3—1
. _ _Ai,l,Na
ez,l,N3 - i — .
Li+1,1,N3 — T4,1,N3
_ _B":yl)NS
ci,l,Na -
yi,2,N3 - y‘i,l,Na
67 ;
Jr1 -— - — —
- = DT+ biga8 Wi+ 20516 Wi+ 018 iv g0
— — -
+¢:,5,16 Wi 41,1 +£,j,16 W5 52, 1 =2,---, N2 — 1
+ 1
.. — 2,75
dij1 = - y
Li,5,1 — Ti—1,5,1
+
b P stﬂrl
i,5,1 =
yiyjsl - yl,]—'l,l
A = Ay Ay Bign . B .1
i1lo=
“ Tit1,51 — Ti51  Tigl — Ti-1,51  Yig+1,10 —Yi51 Yigl —Yii-11 0 %52 — Zigl
o —Aiia
Cij1 = T —
xz"'ly])l xz»]yl
o = —B; i1
%,5,1 . .
Yii+1,1 — ¥Yi 4,1
. . a— ilj’]‘
fij1 = o — o
24,5,2 7 %i5,1
8571?1 i N
SNs g, i . - . 7.
8t ) - d11]1N36 [ "'_'1).7’N3 + bl;]yNS(s u 4,7—1,N3 + g"y])Niia u "';.7’N3'—1
— — — :
+a;,5, N6 Wi §,Ny + €ij,Na® Wit1,,Ng +Ci j,NaO Wi j+1,Ngy J =2,--+,Na—1
+ N
— %,7,4V3
dijN, = =2

Zi,5,Ns — Ti—1,5,N3
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+
b By
%,7,N3 -
y'iyijS - yivj_liNS
+
o CiiNs
gz’],N3 -
24,3,Ns — %i,5,N3—1
—_ + —
iy, = AN N AN + BN
17,4V¥3 -
Ti+1,5,Ns — T4,5,Ns L4,5,Ns — Ti—1,5,Ns Yi,541,Ns — Yi,5,N5
+ o+,
_ %,4,N3 _ 1,5,N3
Yi,5,Ns — Yi,j—1,Ns ?i,3,Na — %i,5,Ns—1
- _ _Ai:j,Na
eZ!]1N3 - . . ..
Ti+1,5,Ns — Ti,5,N3
o BN,
Cij,Ns =
Yi,5+1,Ns — Yi,j,Ns
67U N1
3dV2, —_— -— —_
5 = din16Ui1,n,1 +bin 180N, —11 2N 16 N 1 (3.16)
— —
+e; N, 16 Wit 1Ny, 1+ B N 167U 5 N 2
+
d _ Al Naa
’L,Ng,l -
Ti,Ny,1 — Li—1,N,,1
+
b _ BN, 1
i,Nz,1 =
Yi,N,1 — Yi,N,—1,1
a N, 1 = Ai,Nz,l _ Ai,Nz,l _ Bi,Nz,l + Ci,Ng,l
2y4V2, -
ZTit1,Na1 — Ti,Na,1  Ti,Np,1 — Tic1,Nayl  Yi,No,l — Yi,No—1,1  Zi,Ny,2 — 2i,Na,1
_ _A‘;Nz,l
€; Ny, 1 =
xi-{—l,Ng,l - xi,Nz,l
‘. _ —Ci N1
i Np,l = z—————
Zi,N2,2 - Zi,Nz,l
08U s Ny ke .
34 V2, — —_— —_
—Q = di, Ny k6 W i1, Ny b+ Di Ny 60U s Ny — 1,k i, Na k6 W i, Np k-1 (3.17)
— — —
+a«i,N2,k5 U §,Ny,k + ei,N2,k5 U i4+1,Ng,k + fi,Nz,k(S Ui Ny k15 k= 2’ R N3
+
d _ A No
i,Nz,k -
TiNoyk — Ti—1,Na,k
+
b _ Bi,Nz,k
i,No bk  —

Yi,N2,k = Yi,N2—1,k
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gi,No, k. =

ANk =

€, N2,k =

finvo e =

B8 s N, N,
ot

di, N, Ny
bi N;,Ns
8i,Na,N3

a4,N3,N3

€i,N3,N3

+
C’i,N2,k

zi,Nz,k - Z’l:,Nz,k—l

- + +
ANy b 3 A Nok BN,k

Ti41,Nz,k — Ti,Na,k Ti,Nak — Ti—1,Npk Yi,No,k — Yi,N,~1,k

- +
CiNa b _ CiNa b

Zi,Na,k+1 — 24,Ny,k 23,N3,k — Zi,Np,k—1

_A;Nzyk

Ti41,N2,k — T4,Na,k

~Ci Nk

24,Na,k+1 ™ Zi,Ny,k

— — —
di, Ny, Ny 6 W i—1,N5, N5 + i, N, Na O Ui, Ny —1,N5 + 86, Ng ,No 6 Wi, N, N5 —1

— —
+a; Ny Na O Wi Ny Ny + €3, N, NaO U 541, N, N

+
Ai,Nz,Na
Li,N2,N3 — Zi—1,N2,N3

+
Bi Ny Ny
Yi,N,N3 — Yi,No—1,N3

+
CiNa N
2i,Nz,N3 — %i,N;,N3—1

- +
ANy Ny A7 Na,Ns

Ti+1,N3,N3 — T4,N;,N3 L4,N2,N3 — Ti—1,N2,N3

+ +
Bi,Ng,N:; CinZ,NB

Yi,N2,Ns — ¥i,No—1,N3 Zi,N3,N3 — %i,N3,N3—1

_Ai,Nz,Na
Ti41,Ny,N3 — Ti,Np,N,
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4

Equation 3.11

Equation 3.13

Equation 3.12

Wall Boundary Conditions

Equation 3.15
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Equation 3.13

Equation 3.18



3.2.2 Inflow Boundary Conditions for the System Matrix

The inflow boundary conditions are implemented as modifications to the system matrix following the
method developed in section 2.3.2. For this paper, the inflow boundary condition is assumed to be supersonic;
therefore, there are five physical boundary conditions and zero numerical boundary conditions [10]. From
equation (2.49), the matrices for the supersonic inflow boundary condition become:

OB, :
L = - (3.19)
Ly = 0
and
o 1
% = —L7 "By, (3.20)
(B,
= |75 B
with _ -
P
my
By = | ma (3.21)
m3
e 6 -
Equation (3.20) becomes the following when it is linearized:
86w 8By ]
A = [ M”, ] 6Bse (3.22)
If there are no upstream inputs 6 By, becomes:
8By = %57 (3.23)
and the inflow boundary condition is represented by the following equation:
i .
?f—%ti”“ = 514k (3.24)
withj=1,---,Npand k=1,---, N3.
<] M
ay S
>> 2
P RAn S
e 0l
PO,
<11 ‘.P 4‘
o]
= >4 ¢
D%y Y%
4 ' 4"’ $4
AT
Xy
LK)

N

[
AVA,

Inflow Boundary Conditions

These boundary conditions are included as modifications to the system matrix at the first grid point in the

x-direction.
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3.2.3 Outflow Boundary Conditions for the System Matrix

The outflow boundary conditions are also implemented as modifications to the system matrix following
the method developed in section 2.3.2. In general, the outflow boundary condition is subsonic; therefore,
there are four numerical boundary conditions and one physical boundary condition [10]. The equations for
the subsonic outflow boundary condition are as follows:

3571\[ 1,1 — — — —
> =AM 18 TN AN 18T N L eny 118 N 20+ BN 1,16 N 10 (3.25a)
-
86 u Ny,1,k — d 6—) 6—) —
ot OMLEOWN 1,1k F BN, LEO W Ny LE-1 AN, LW N1k
— —
+eny, 1,680 Ny 2k + Ny 1RO W N 1 k1, K=2,0-- N3 — 1 (3.25b)
8671\( 1.N. — — N -
—— =dn,,N 0T N —1,1,N; + 8Ny 1, N5 6 W Ny 1N 1 + a1, N 0w Ni,1,Ns T €Ny 1, N0 W N, 2N,
ot
(3.25¢)
06U N, ;
:Jvl - —_ —_—
o = NN 11 DN 0T N o1 AN, 516 T N
— — .
TN, 16U Ny G411 + BN 510U N G2, T = 2,00, N — 1 (3.25d)
35—1,_1,)1\; i ke
3y — — —_
= ANk TN ik DN RSN, 1k + BN T N, k-1
— — —
Tan,, k6 W Ny gk + NGRS W N1k NG k8 Ny G e (3.25€)
j=2a"'aN2_11k:2"")N3_1
3671\{ i N,
1,7,4V3 — — —
— dn, 5, Ns W N —1,5,Ns + BNG N O W N, i—1,Ns + 8Ny, Na O T NG Ns—1
— — .

FAN,G,NaO U N j,Ny + CNy G N W Ny 1, Ney § = 2,00+, Np — 1 (3.25f)
86?1\71,1\/2,1 =d 5w b 5 5T f 5T
T = ONLN, 10 U N —1,N,,1 T PN NG, 10 WN N~ 1,1 F AN N, 16 W N N 1 BN v, 108 N N 2

ot
- (3.25g)
I8 N, N, ke
1,V2, — — —
B Ta— ANy, Np k8 U N, —1,Nz b + BNy, N W Ny N1,k BNy N k6 T Ny Ny -1
— —
+an;, Ny k6 Ny Ny b + BNy NG k68 Ny Ny kb1, B =2, N3 — 1 (3.25h)
-
U N, N, Ns d 5 b P P
at - N1, Nz, N30 U N1—1,N2,N3 + N1,N2,Na 0 U Ny,N2—1,Ns + gNl,Nz,Na U Ny,Ng,N3—1
—_) .
+aN,, Ny, N3 W Ny, Ny, N (3.251)
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Outflow Boundary Conditions

Equation 3.25a Equation 3.25b Equation 3.25¢
Equation 3.25d Equation 3.25e Equation 3.25f
° o
Equation 3.25g Equation 3.25h Equation 3.251

These boundary conditions are included as modifications to the system matrix at the last grid point in the
x-direction. They will be discussed at length in section 3.3 where the coefficients of the equations are defined,
and the input matrix, B, is derived. ’

3.3 Input Matrix for Downstream Mach Number

When the flow at the compressor face is subsonic, there are four numerical boundary conditions and
one physical boundary condition [10]. The numerical boundary conditions are associated with the positive
characteristics, and the physical boundary condition is associated with the negative characteristic. The
implementation of the downstream Mach number as a boundary condition input is derived below.

To begin with, take the inverse of (2.25), and then partition the matrix following the procedure from
section 2.3.2.
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()"
Kil=| - __ (3.26)

(&)

Here, (K7 1)N is the first four rows of Kj! , and (Ky 1)P is the last row of K7 1. The physical boundary
condition equation is:

By =M — Minp'u.t (327)
where Minpyt is the prescribed boundary condition input or set point, and M is defined as:
M= yuT vt tw (3.28)

C

If M is rewritten in terms of the state variables p, m;, mg, ms, and e, equation (3.28) becomes the following:

\/Q\/ml +m2+m3 (329)

VY 2ep(y—1) —v(mf + m§ + m3) + m? + mZ + md)

Taking the partial derivative of By.(u’) with respect to " yields,

OBy _ [ OM OM OM OM M (3:30)
dw | Op Om; Omg Omg B¢ )
M oM OM OM oM
where — 3 * Imy’ B’ Oma’ and e are shown below.
oy Y (2e(v=1) —ypV'2) + p0?
" WW@—M\/ el =D
9p ¥(2 - pv'2)* (1—7) |p|
Y (2e(y—1) —7p02) 4+ p7?
2
N e e
omy v (2 = pV2) (y — 1) /m} + mZ + m}
26 y—1) = vpv’?) + pv'?
. V2m \/ (=) =9 v®) +o sgn (p)
= (3.31)
omy 7(2e—pv2)(7—-1)\/m1—+—m2§+m3§
v (2e(y=1) ~vp@2) +p7?
2
oM V2mg > sgn (p)
Omg v (2 = p02) (v — 1) /m] + m§ + m3
v (2e(y—1) =p?) 4 pv2
oM V2y/m? +m2§+m3§\/ ( 5 ) sgn (p)
de 7 (2 - p9'2)* (1-7)
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Therefore, for the downstream Mach number boundary condition, L, is defined as:

(&)Y
L=} — _ __ (3.32)
aBbc
| oW
and Lg is defined as: _ -
(&)™ A
Lo=1) _ _ __ (3.33)
0

From equation (2.48) , the compressor face boundary condition may be written as follows.

T O~ TN i T s
T mik o g, (ANm‘,k——u % 4+ B, ,j,k—'—a LNk | G e ’J'k) =Ly’ { : (3.34)

ot oz Oy 0z By,

For this boundary condition to be implemented in the small perturbation model, it must be linearized as
shown below.

08U Ny sk | r—1 08U Ny .k 05U Ny i,k 057 N, .k 1| 0
5 tiile (AM kg T Bm, L Y +Cn ,J,kT) =1L _§B,,
(3.35)
6By, is calculated as: 5B 5B
' . be «—> be g
6Boe = Zp 00 + OMinput OMipu (3.56)
and can be rewritten as:
OM OM O8M OM oM ] __, ‘
6Bbc = [ 5’0— 8m1 amz am3 E‘ ] (5 u — (SM.anut (337)
_ . . . ' 06U,
Now substituting equation (3.37) into equation (3.35) and replacing s

5 * with equation (2.31) yields:

— . — —
08w N, ik ~17 4 SUN ik = 6U N —1,5k
— —Li L2 AN, j,k
ot TN,k — TNy—1,5,k
WN, ik TN, ik
—L_1L2B ke 1,7, L—lL C & 1,7
1 N1,j, ay 2V N1, 3, 9z
O4x5

~Lt 50 Ny (3.38)

OM oM OM M M

. dp Omy Omp Omg Oe
r T

+Li' 10 0 0 0 1| SMinpu

25



this can be rewritten as the following:

I8 N, i ke _ ANy gk — AN, ik —
1,7y — Ll 1L2 _ 1,2y 5 U0 Nl,j,k + 1,7y 6‘ LY} Nl—-l,j,k
ot TNy, 5k — TNi—1,5,k TNy, 5k — TNy—1,5,k
+ + -
BN, ik P BN, gk BNy ik e
U Ny,j—1,k — - : U Ny,5,k
YN1,jk — YN1,j—1,k YNijk —YNyi—Lk  YNij+1,k — YNy, ik
KI 1,k A CI-*\; 1k
27 rrd 37y —
- : U Ny 1,k + - U Ny, k-1 (3-39)
YN1,j+1,k — YNy, ik ZNy,5,k = 2Ny jk~1
+ — S

Clej;k CNl,j,k 5T CNl 2k 5

- - u lejyk - u Nl:jyk‘l"l

2Nk~ ZNy,gk—1  ZNyjk+l = ZNy,jk ZNy k41 = ZNy 5,k
O4xs T
—1 — -1
—L; 8B, SU Nk + Ly [ 0000 1| Miupu
C

o

The terms for the input matrix, B, are obtained from the coefficient on §M;ppy:. Equations (3.40) through
(3.48) are used to modify the system matrix, (3.10).

—
86 U Ny,1,1

ot

1 AN
dy,11 = Ly Lp -
le,l,l - le-—l,l,l

— — — —
= dn,1,16 W N —1,1,1 Han, 1,10 W N 11 ey 1,10 W N 21 + BN 110 N 2 (3.40)

I = L_lL ANl’lrl Blel,l Clel,1 —1 04)(5
a1 = Li'Ly |- + + ~Ii | op
TN;1,1 — N -LL1 UNL2,1 —YUNL1,1 0 2NG1,2 — 2Ny, be
0w
B
-1 N1,1,1
eyt = —LiLe L
YNL,2,1 — YNL1,1
o=
-1 Ni,1,1
fnvii1n = —Li Lo | ————22
ZN1,1,2 - le,l,l
T N, 1k
1,4, - — _—
7 = Akl UN-Lk + 8N W NG 1Lk-1 + AN 1R W N 1k (3.41)

— —
+eny, 1,668 Ny 2k + EN 160U Ny 1 k1, B=2,000, N3 —1

A
-1 Ny,Lk
dyv,ix = L7 Lo :

le,l,k - le—l,l,k

+
CNl,l,k

ZN1,1,k 7 ZNy,1,k-1

gnv1k = Li'Lo
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Ny,l,k

27

-1 AN 1,k
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3.4 Output Matrix

(3.48)

The outputs for the linearized inlet model are static pressure, total pressure, and Mach number. For an
input located at the compressor face, these outputs are located downstream of the normal shock. Outputs
upstream of the normal shock remain unaffected by a downstream disturbance, therefore they do not need

to be considered.

3.4.1 Static Pressure

The components of the output matrix, C, for the static pressure response are obtained by linearizing the

static pressure equation:

2 2 2
p = (7_1)<5_m$i21_3)
_ Op dp Op dp Jp
bp = 8pép-i—a 6m1+————8 dmo —l—(9 6m3+855

o = 3= (B 5y o () b - (- 1) (22 g

—(7—1)(p )5m3+(7 1) e

Each coefficient of the small perturbation terms is an entry in the output matrix.

3.4.2 'Total Pressure

(3.49)

The output equation for the total pressure is determined in the same manner as for the static pressure.
The components of the output matrix for the total pressure response are obtained from the linearization of
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the total pressure equation:
1

-1 v—-1
pi=p (1 + 12—M2) (3.50)

The pressure and Mach number terms are replaced with expressions in terms of p, m;, mg, mg, and ¢,

1
2evp 4 (mf+m3+m3) (1 - 'y)) =t

2

(v=1) 2evp+ (m} +md +mj) (1 — 7)) ( N Gep—mE — i — )

Then the total pressure differential is calculated as shown below.
Opt Op: Op: Op: Opt
== — _ — —_— .52
Sps 9 bp+ o mg + g dmg + Brma dmg + 5 e (3.52)

Each one of the coefficients in the small perturbation terms of the above equation is an entry in the output
matrix for the total pressure.

1
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—2 (.2 _ _ _
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op v(p0? (Y2 -3y +1) —2ev(y—2)) ( e — 77D
omy v (2~ p ')
1
R 2y +p02(1-v)\v-1
2 (02 _ — _
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2ey+p02 (1= )\ v -1
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P i il G
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3.4.3 Mach Number

Likewise, the output equation for the Mach number is determined in the same manner. The components
of the output matrix for the Mach number response are obtained from the linearization of the Mach number

equation, - - ;
vuc +ve +w
c

The velocity and speed of sound terms are replaced with expressions in terms of p, my, mg, ms, and € (as
shown in section 3.3). Again, the total differential of the Mach number is calculated,
oM oM oM oM oM

_oM . oM oM oM 55
M 5 bp+ F dmy + p dmg + s émg + 5% be (3.55)

M= (3.54)
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and each coefficient on the small perturbation terms is an entry in the output matrix for the Mach number.

2 —1)— =2 —9
ﬁ\/m(s_pvz)\/‘f(e(“r 1) —vp0'%) + 9o
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oM p
e 7 (2 — p02)* (1 — )

4 Model Reduction

The models developed from the linearized split flux method are usually too large to be used effectively
in the design of a control system; therefore, model reduction is necessary so that the linear model can be
transformed into one that is of manageable size. In addition, a reduced order model (ROM) is needed when a
transfer function of the system is desired, because the calculation of the transfer function from the full order
model (FOM) becomes a numerically ill-conditioned problem. In general, the linear reduced order model is
expected to perform like the linear full order model. There are many different methods that can be used for
model reduction; those considered here take advantage of the state space format of the linear model.

One of the most common model reduction methods is singular perturbation [13]. This method requires
a linear model that can be partitioned into slow and fast subsystems so that a reduced order model can be
obtained by neglecting the fast subsystem. The ability to partition the model into subsystems indicates that
the model possesses a two-time scale property; that is, there is a large gap in the spread of the eigenvalues
of the linear model. There is little contribution to the dynamics of the system from the fast eigenvalues;
therefore they can be discarded and a reduced order model obtained. But as was shown in [14] this method
does not provide the smallest reduced order model that can be achieved, since in general the linear systems
do not possess a two-time scale property.

Another popular method is balancing [15] [16] [17]. This method requires a linear model that can be

partitioned into a strongly controllable/observable subsystem and a least controllable/observable subsys-
tem. A reduced order model is then be obtained by discarding the least controllable/observable subsystem.
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However, the ability to partition the system into these subsystems indicates that the model is minimal;
that is, it is both controllable and observable. In general, linear models developed from the linearized CFD
method are not minimal. Therefore this method does not work well because of the many uncontrollable and
unobservable states in the linear model.

Two model reduction methods that are successfully applied to the linear model are the Schur and square
root methods [18]. Both of these methods take into account the controllability and observability of the linear
system, but they do not depend on the linear model being minimal. Although the Schur method is more
numerically robust than the square root method, the square root method is preferred over the Schur method
because it is computationally less expensive. In addition, since the reduced order model is balanced from the
square root method, smaller reduced order models can be extracted from the original reduced order model
without any more computations. The same is not true for the Schur method. The square root method is
described in the next section and will be applied to the linear models developed later in the paper.

4.1 Square Root Model Reduction

The square root method of model reduction detailed in [18] is summarized here for the readers convenience.
This model reduction method reduces the full order model by a balancing transformation that requires only
the first k (size of reduced order model) columns of the balancing transformation matrix. The reduced order
model (A, By, Cx, Dx) for the state space system (A, B, C, D) is calculated from:

Ax = ST 4i,ASRpbig

Bx = S7.,,B (4.1)
Cx = CSRrpig
D, = D

Computation of the transformation matrices S’%', and Sg ;g is shown below.

big

To begin with, the controllability and observability Grammians, P and @, are calculated from the fol-
lowing Liapunov equations. :

AP+PAT = -BBT
ATQ+QA = -CTC (4.2)
Once the Liapunov equations are solved for the Grammians, the square roots of P and @,
P = LJIT
Q = LT (4.3)
are calculated from the following;:
[Up: Sp, V] = SVD(P)
L. = Updiag (, /diag (Sp))
(4.4)
[Ug, Sq,Vg] = SVD(Q)

L, = U,diag (M)

A singular value decomposition (SV D) of LT L, produces the matrices needed to compute S}I;,bi o and Sgpig-

[U,5,,V]=8SVD(LIL.) (4.5)
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>, is defined as:
Y1 =diag(01,02, - -, 0m) (4.6)

where m is the number of nonzero Hankel singular values represented by 0. The o are defined as the square
roots of the eigenvalues of the PQ matrix.

o=\ (PQ)?} (47)
From }~,, 37, is defined as:
> b = diag(o1,02," - -, 0%) (4.8)

Note that the o are in descending order according to their magnitude. Now Sz, 34 and Sg sy can be calculated
from the following equations,

-1
SL,big et LOU[ Zé)al ]
3
Shsig = LCV[ Z(t)mz ] (4.9)

and the reduced order model can be determined using equation (4.1). While this method works well for
the linearized one dimensional CFD models, it must be modified before it can be used for the linearized
multidimensional CFD models; because due to their large size and sparse structure, the multidimensional
CFD models are numerically ill-conditioned. These modifications are described in the next section.

4.2 Modified Square Root Model Reduction

Unfortunately for the linearized multidimensional CFD models, the calculation of the Grammians that
are needed for the square root model reduction is computationally prohibitive because of the large number
of equations involved. However, low-rank approximate solutions to these large scale Liapunov equations are
possible. The approximate solu’clon for the large scale Liapunov equation is calculated using the Arnoldi
method from [19]. In addition, further numerical savings are achieved if the SV D calculations are performed
using the partial SV D method from [20]. The modifications that are needed to the square root model
reduction method when using these approximations are detailed in this section.

Since the controllability and observability Grammians are approximations, the square root model reduc-
tion method has to be modified [21]. The approximate controllability and observability Grammians are equal
to:

Pappro:z: = ‘/po‘/pT
Qa.ppro:c - ‘/quV:]T (410)

where the matrices V,, X, V, and X, are calculated using the Arnoldi approximation method from [19].
Then the matrices L, and L, from (4.3) are calculated using the following equations:

L. = VpR,
L, = V,R, (4.11)

where R, is the square root of X, and R, is the square root of X, as shown below.
[UXP’ SXP’ VX}"] = SVD (Xp)
R, Ux,diag ( diag (Sxp)>
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(4.12)
[Ux,,8%,,Vx,] = SVD(Xy)

R, = Ux,diag ( diag (,S'Xq))
The matrices needed to compute Sf’bz:g and Spig for equation (4.9) are then calculated from:
[U’ 21’ V] =SVD (L;I;Lc) (4.13)

where Y, is defined (4.6) by and }_,,; is defined by (4.8). Finally St s, and Sg i, are determined from
the following equations,

-1

-1
SRpig = LCV[ Zgal } (4.14)

and the reduced order model is computed using equation (4.1). For this work, the singular value decomposi-
tions in the above equations were calculated using the subspace approximation method from [20]. Note that
in the modified square root model reduction, the approximate Grammians are never calculated; this results
in a significant savings in computation time and in storage requirements. The errors associated with the
model reduction and linearization processes are described in the next section.

5 Uncertainty

There is a certain amount of error associated with the linear models developed using the linearized split
flux method; in particular, there is error due to the linearization process and the model reduction process.
These errors can be characterized as modeling uncertainties which are represented by error bounds and are
derived below.

5.1 Linearization Error

The major source of error incurred in developing linear control models lies in the linearization process.
As long as all the expected perturbations from steady-state are “small”, the error bounds will be small.
Here, small depends upon which variables are being considered and how sensitive the system dynamics are
to steady-state changes. Clearly this must be determined by trial and error for each system considered.
Normalizing the data allows all the variables to be weighted similarly. While many approaches can be
considered for determining error bounds, the one described below uses infinity norm bounds and is probably
the most useful for the control system designer. In addition, it is also a convenient form for the numerical
experiments considered. It should be noted that this error bound holds exactly only for linear systems; as
such, it only serves as an approximation of the true bound. Its accuracy will certainly be degraded for larger
perturbations.

The modeling error due to the linearization process is based on the fact that the infinity norm of the
transfer function error is less than or equal to the one norm of the unit impulse response error (B. Veillette,
University of Akron, Akron, OH., private communication).

Gtrue (jw) = G (jw)lloo < lI8true (t) —g @)l (5.1)

G ¢rue (jw) represents the transfer function of an exact linear model, if it were available, and G (jw) represents
the transfer function from the split flux linearization process. The infinity norm of the transfer function error
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is defined as: :
[Gtrue (jw) — G (jw)l oo = Tmax {Gtrue (jw) — G (jw)} (5.2)

and the one norm of the impulse response error is defined as:

leirse ) = £ @) = [ lgime @)~ g0l (53)

15" |gtrue (t) — g ()| dt can be approximated by:

o0 N
/0 Berue () — 5 (O] dt = 3 [gh,, — g7 AT (5.4)

n=0

Therefore, the error bound on the infinity norm of the transfer function can be represented by the following:

N
1Gtrue (jw) = G (1)lloo S D l8irue — 871 AT (5.5)

n=0

The notation can be simplified by expressing Gy (jw) — G (jw) as E (jw) and g2, — g™ as e™. Therefore,
the linearization error bound is represented as:

N
[E ()l S le™ AT (5.6)

n=0

For multi-input/multi-output systems (MIMO), the transfer functions and impulse responses are represented
in matrix form, and the linearization error bound can be determined from the following:

[ llen @l le®l, - lewp @l |
1B () < o lle21 ‘(t)||1 ||922'(t)||1 |Ie2p.(t)|il 57
| llers @)1y llerz )l -+ llemp (W], |
The maximum singular value of a matrix is defined as:
Omax = (Amax (matrimeatria:))% (5.8)

For a MIMO system with p number of inputs and r number of outputs, the transfer function error matrix is
written as:

En (o) En2(jw) -+ Eip (jw)
B E21.(.7'w) Ezz'(jw) Ezp'(jw) (5.9)
Bi(e) Bal) - B
and the impulse error matrix is written as:
en(t) en(t) -+ eyp(t)
o ezlﬂ(t) e22.(75) ezp.(t) (5.10)
en(®) enlt) - em®)
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In the preceding definition, the one norm of each element is:

les Ml llewz @y -+ llew ®)ll;
00 e t e (t ce € t
/ o] di = | 21.( Myl .( )y | | 2p.( )y (5.11)
| e Blly Nlerz @y -+ Nlers Dl |
and the approximation for (5.11) is:
[ N N N i
Zo|e§‘1|AT gole'fzmT Zole’fp|AT
N N N
o0 > |eB|AT 3 || AT -+ X |eg,| AT
/ le|dt ~ | 70 n=b = (5.12)
N N N
OBIAT 3 [eB|AT - 3 |en AT
L n=0 n=0 n=0 .
Therefore the infinity norm of the error transfer function matrix is bounded by:
([ N N N 7))
Z’o leTy| AT 2_:0 lefo| AT --- X—:o |e?p| AT
N N N
. > leBH|AT 3 [ef|AT - > IegplAT
IE (jw)lloo S Omax § | =0 n=0 n=0 ) (5.13)
N N N
CRIAT X [l AT - 3 [efy| AT
\ L n=0 n=0 n=0 4

and (5.13) is used to calculate the linearization error bound for a MIMO system.

The error analysis described above is based on the error in the unit impulse response. However, in general,
the input for the nonlinear model is a step not an impulse; therefore, the impulse error must be derived from
step response data. In the block diagram shown below, the setup for the error analysis is illustrated.

4

G(s)true

+ y(t)u-ue
e(t)s(ep

O(t) —»

@ |-

y(t)

G(s)

This block diagram can be rearranged so that the outputs of the transfer functions are the impulse responses.
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™ G(s)true

TG

8(t) — e (t),,,,

» |-

h(t)

4

G(s)

Now, the step error is represented as the integration of the impulse error. Therefore, the impulse response
error can be determined from the step response data by taking the derivative of the step response error.

e(t) = S (0 (yrue — ¥ (1) (514)

If the time derivative in the previous expression is approximated by a finite difference expression, then
equation (5.14) can be rewritten as:

n L= _ fn_ n—1
o™ ~ <(ytrue ytrue) (y y )) (5,15)

AT

and the linearization error bound can be calculated using (5.13) .

5.2 Model Reduction Error

When using the modified square root model reduction described in the previous section, the bound on
the error between the linear full order model and the linear reduced order model can be calculated using the
method of the previous section.

|G (jw) = Gic (jw)llo < g (2) — 81 (D)l (5.16)

G (jw) represents the transfer function from the split flux linearization process, and Gy (jw) represents the
transfer function from the model reduction process. Following the procedure outlined above, the error bound
is calculated from:

(- N N N T )
Zo leTy | AT 20 el AT --- ‘;0 Ie?p| AT
N N N
> || AT 3 [eB,|AT - X |e§lpIAT '
IE (99)llo S Omax { | =0 n=0 =1 > (5.17)
N N N
ley| AT 3 |efs] AT - 3 |97p|AT
\ L n=0 n=0 n=0 S 7
and e” is defined as: .
n_,n-1y __ (,n__,n—1
o o ((y y )AT(yk Vi )) (518
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5.3 Total Error Bound

As the infinity norm bound of a system is a Nyquist plane bound, the bounds serve as magnitudes of
error incurred in each step in the modeling process. Thus, the total infinity norm bound is determined as
the sum of the individual bounds from linearization and model reduction. This is represented as:

[Gitrue (1) — Gi (1)l € Gtrue (jw) — G (jw)llo + I1G (jw) — G (jw)ll oo (5.19)

where Gy (jw)represents the transfer function of an exact linear model, G (jw) is the transfer function
from the linearization process, and Gy (jw) is the transfer function from the model reduction process.

6 Example Application

In this section, two dimensional and three dimensional models of the variable diameter centerbody (VDC)
inlet are used to illustrate the CFD-based linear modeling technique discussed in this paper. The VDC inlet
is an axisymmetric inlet with a collapsible centerbody [22] and is typical of inlets being investigated for
use on aircraft being developed under NASA’s High Speed Civil Transport program. The inlet is designed
to operate at the following conditions: altitude = 65,000 ft, poo = 117.8 -fl—f.;, Too = 395 °R, M, = 2.5,
Mcompressor face = .33, and v = 1.4, and simulation data for the nonlinear model was obtained from the
CFD code PARC [7]. The steady-state PARC data before the perturbation occurs is used to generate the
linear model, and the linear model is validated from the transient PARC data that is generated by the
perturbation. In general, the perturbation is a step input that is not too large so that the small perturbation
analysis remains valid. Because the CFD model has so many equations (7,896 for the 2D model and 61,800
for the 3D model) it is not numerically feasible to use the entire grid to derive a linear model at this time.
Therefore, the linear models are calculated based on reduced grids obtained from the original CFD grid.
These reduced grids are obtained by selecting grid points that approximate the entire grid. Once the linear
models are generated, the reduced order models are obtained using the modified square root method. The
nondimensional results for these examples are discussed in the next section, and the data for these matrices
are listed in section 8.3 of the appendix.

6.1 Results

6.1.1 2D VDC Inlet Model: Downstream Mach Number Perturbation

The two dimensional nonlinear CFD model from cowl lip to compressor face is represented by a 94 x 21
grid which has 1974 grid points (7896 states). The system has one input and two outputs. The inlet is
perturbed at 0.01 seconds with a —3% step in compressor face Mach number, and the system outputs for
static pressure are located downstream of the normal shock at X/R. = 4.08 and X/R. = 5.01. The —3%
change in the compressor face Mach number produces a 4.24% change in steady-state for the static pressure
output at X/R, = 4.08 and a 3.05% change in the steady-state for the static pressure output at X/R, = 5.01.
The overall error bounds for various linear models based on reduced grids of the CFD model are listed below,

| Grid [ # FOM States | # ROM States | Error Bound |

26 x 3 312 13 0.43461
26 x 5 520 13 0.43382
26 <7 728 13 0.43342
48 x 3 576 13 0.41472
48 x 5 960 13 0.41449
48 x 7 1344 13 0.41424
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and the nondimensional results for the above models are shown in Figures 1 — 12.

In Figure 1, the PARC transient data from the 94 x 21 grid is compared to a ROM of the linearized
CFD model developed from a 26 x 3 grid. In Figure 2, the locations of the FOM eigenvalues are compared
with those of the ROM. The FOM has 312 states and the ROM has 13 states; this represents a reduction
of 95.8% in the size of the linear model. The minimum eigenvalue for the FOM is located at —8.9721 x 10!
and at —8.9724 x 10! for the ROM. The maximum eigenvalue for the FOM is located at —4.6705 x 10% and
at —6.7659 x 10% + 57.3296 x 103 for the ROM. Note the minimum eigenvalue for the FOM and ROM are
approximately equal, but the maximum eigenvalue for the FOM is further to the left of the imaginary axis
than for the ROM. This is evident in all of the examples.

In Figure 3, the PARC transient data from the 94 x 21 grid is compared to a ROM of the linearized
CFD model developed from a 26 x 5 grid. In Figure 4, the locations of the FOM eigenvalues are compared
with those of the ROM. The FOM has 520 states and the ROM has 13 states; this represents a reduction
of 97.5% in the size of the linear model. The minimum eigenvalue for the FOM is located at —8.8813 x 10!
and at —8.8783 x 10! for the ROM. The maximum eigenvalue for the FOM is located at —87577 x 10¢ and
at —3.1972 x 10* for the ROM.

In Figure 5, the PARC transient data from the 94 x 21 grid is compared to a ROM of the linearized
CFD model developed from a 26 x 7 grid. In Figure 6, the locations of the FOM eigenvalues are compared
with those of the ROM. The FOM has 728 states and the ROM has 13 states; this represents a reduction
of 98.2% in the size of the linear model. The minimum eigenvalue for the FOM is located at —8.8463 x 101
and at —8.8442 x 10! for the ROM. The maximum eigenvalue for the FOM is located at —1.2967 x 10° and
at —2.9908 x 10* for the ROM.

In Figure 7, the PARC transient data from the 94 x 21 grid is compared to a ROM of the linearized
CFD model developed from a 48 x 3 grid. In Figure 8, the locations of the FOM eigenvalues are compared
with those of the ROM. The FOM has 576 states and the ROM has 13 states; this represents a reduction
of 97.7% in the size of the linear model. The minimum eigenvalue for the FOM is located at —1.0385 x 102
and at —1.0398 x 102 for the ROM. The maximum eigenvalue for the FOM is located at —8.6676 x 10¢ and

—3.9629 x 103 & 48.4573 x 103 for the ROM.

In Figure 9, the PARC transient data from the 94 x 21 grid is compared to a ROM of the linearized
CFED model developed from a 48 x 5 grid. In Figure 10, the locations of the FOM eigenvalues are compared
with those of the ROM. The FOM has 960 states and the ROM has 13 states; this represents a reduction
of 98.6% in the size of the linear model. The minimum eigenvalue for the FOM is located at —1.0399 x 102
and at —1.0424 x 102 for the ROM. The maximum eigenvalue for the FOM is located at —1. 1310 x 10% and

—3.4176 x 103 £ 58.3316 x 10® for the ROM.

In Figure 11, the PARC transient data from the 94 x 21 grid is compared to a ROM of the linearized
CFD model developed from a 48 x 7 grid. In Figure 12, the locations of the FOM eigenvalues are compared
with those of the ROM. The FOM has 1344 states and the ROM has 13 states; this represents a reduction
of 99% in the size of the linear model. The minimum eigenvalue for the FOM is located at —1.0414 x 102
and at —1.0463 x 102 for the ROM. The maximum eigenvalue for the FOM is located at —1.5374 x 10° and
at —3.2790 x 102 + j8.2064 x 103 for the ROM.

6.1.2 3D VDC Inlet Model: Downstream Mach Number Perturbation

The three dimensional nonlinear CFD model from cowl lip to compressor face is represented by a 103 x
15 x 8 grid which has 12,360 grid points (61,800 states). The system has one input and two outputs. The
inlet is perturbed at 0.01 seconds with a —3% step in compressor face Mach number, and the system outputs
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for static pressure are located at X/R. = 3.9448 and X/R, = 4.9262. The —3% change in the compressor
face Mach number produces a 3.988% change in steady-state for the static pressure output at X/R. = 3.9448
and a 3.3362% change in the steady-state for the static pressure output at X/R, = 4.9262. The overall error
bounds are listed below for two linear models based on reduced grids of the CFD model,

| Grid | # FOM States | # ROM States | Error Bound

15x3x3 675 17 0.69196
20x3Ix3 900 17 0.67617

and the nondimensional results for the above models are shown in Figures 13 — 16.

In Figure 13, the PARC transient data from the 103 x 15 x 8 grid is compared to a ROM of the linearized
CFD model developed from a 15 x 3 x 3 grid. In Figure 14, the locations of the FOM eigenvalues are
compared with those of the ROM. The FOM has 675 states and the ROM has 17 states; this represents
a reduction of 97.5% in the size of the linear model. The minimum eigenvalue for the FOM is located at
—1.4375 x 10? and at —1.1705 x 10? for the ROM. The maximum eigenvalue for the FOM is located at
—5.4626 x 10 and at —8.3988 x 103 + j3.6576 x 103 for the ROM.

In Figure 15, the PARC transient data from the 103 x 15 x 8 grid is compared to a ROM of the linearized
CFD model developed from a 20 x 3 x 3 grid. In Figure 16, the locations of the FOM eigenvalues are
compared with those of the ROM. The FOM has 900 states and the ROM has 17 states; this represents
a reduction of 98.1% in the size of the linear model. The minimum eigenvalue for the FOM is located at
—1.1268 x 102 and at —1.1268 x 10? for the ROM. The maximum eigenvalue for the FOM is located at
—5.4626 x 10* and at —8.4927 x 103 + 73.3323 x 102 for the ROM.

6.2 Discussion

The CFD steady-state data from the reduced CFD grids seem to provide enough information to calculate
reasonable linear models that represent the original CFD model. Note that in the two dimensional results,
an increase in the number of nodes in the y-direction did not have as much effect on lowering the linearization
error bound as did an increase in the number of nodes in the x-direction. This result is shown in Figure 17
and illustrates that the inlet model is not strongly two dimensional. In general as the number of grid points is
increased in the reduced CFD grid, the better the linear model; in other words, linear models obtained from
larger reduced CFD grids have lower linearization error bounds. For the three dimensional model, increasing
the number of nodes in the x-direction lowered the linearization error bound but not by very much. This is
probably due to the fact that so little of the original CFD grid is being used in the development of the linear
model. The three dimensional example is included mainly as an application of the linear modeling concept
and model reduction process.

Linear results based on one dimensional data obtained from averaged two dimensional data are shown
in Figures 18 and 19. As was noted above, the inlet model is not strongly two dimensional; therefore, the
dynamic behavior of the inlet can be represented by a one dimensional linear model. The linear model
based on the averaged steady-state data has 282 states. The linear results based on one dimensional data
obtained from averaged three dimensional data are shown in Figures 20 and 21. The linear model based
on the averaged steady-state data has 309 states. Again, the three dimensional inlet model is adequately
represented by a one dimensional linear model based on the averaged steady-state data.

As was noted in the one dimensional modeling paper [9], the full order model eigenvalues closest to
the origin are reproduced in the reduced order model, but the eigenvalues farther away from the origin
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are approximated by just a few eigenvalues in the reduced order model. The model reduction for the
linearized models based on the multidimensional CFD data is not as straight forward as it is for the one
dimensional models. In the one dimensional case, the model reduction process for the linear models used
established methods. For the multidimensional linear models, the model reduction process had to be modified
by implementing approximation methods for the Grammian and SVD calculations. These approximation
methods require that the user declare error tolerances for the algorithms and approximation sizes for the
matrices. The smaller the error tolerance used, the longer the approximation method takes to converge: so
there is a trade-off between computation speed and accuracy. In addition, as the full order linear models
become larger, the approximation sizes need to be made larger; this also increases the amount of time needed
to compute the reduced order model. Unfortunately, there are no proven guidelines that can be used when
choosing the approximation sizes and error tolerances for the model reduction method,; improvement in this
process needs to be addressed.

7  Conclusion

Linear dynamic models of multidimensional mixed compression inlets have been developed from steady-
state CFD results. As was the case for the one dimensional CFD models, it is possible to obtain a linear model
from the spatial information and steady-state operating conditions of a multidimensional CFD simulation.
The linearization process for the multidimensional models was more difficult due to the different types of
boundary conditions. The small perturbation models that result are useful for control applications, real-time
simulations, and model reduction. Additional types of inputs need to be developed as was done for the linear
models based on quasi-one dimensional CFD results [9).

Model reduction proved to be a more difficult problem than for the one dimensional case due to the
size of the computational grids of the multidimensional CFD models. Modifications to the existing model
reduction method were made which produced viable reduced order models. Furthermore, model reduction
for systems on the order of a thousand states is possible. Work remains to be completed on more efficient
model reduction algorithms for these large scale systems.
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8 Appendices

8.1 Symbols
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Jacobian for %ﬁ-
system matrix
.
Jacobian for %g—

input matrix

physical boundary condition
Jacobian for %—L‘

output matrix

input/output matrix
speed of sound (ﬂé)

se
total energy per unit mass (lsl;u;)
error transfer function matrix
. . 12
internal energy per unit mass (;%5)

€rTor response
error impulse matrix

flux vector for the x-direction
transfer function
flux vector for the y-direction
impulse response

flux vector for the z-direction
matrix of right eigenvectors
v-1

Mach number

. slu
massflow per unit area { Z=%; i

number of grid points in the x-direction
number of grid points in the y-direction
number of grid points in the z-direction

pressure ('ﬁg )

controllability Grammian
observability Grammian
cowl radius (ft)

entropy

time (sec)

velocity ;’;ic in the x-direction

velocity ;% in the y-direction

- Lt_ . . .
velocity (L= ) in the z-direction
vector of conservative variables

velocity vector

- vector of characteristic variables

distance (ft)
distance (ft)
output reponse
distance (ft)

43



8.1.1 Greek Symbols
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sampling time (sec)

€ = pE, total energy per unit volume (%)
small perturbation variable

unit impulse

ratio of specific heats

diagonal matrix of local characteristics
eigenvalue

density (s—;;-fa-‘l)
singular value
rad

frequency (Z22)

sec

Subscripts

boundary condition

grid point in the x-direction
grid point in the y-direction
grid point in the z-direction
size of reduced order model
left

number of outputs

right

number of inputs

total conditions

Superscripts

numerical
time level
physical

transpose
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8.2 Figures

8.2.1 2D VDC Inlet
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Output Responses to a -3% Step in Compressor Face Mach Number
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Output Responses to a —-3% Step in Compressor Face Mach Number
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Output Responses to a -3% Step in Compressor Face Mach Number
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Output Responses to a -3% Step in Compressor Face Mach Number
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Output Responses to a -3% Step in Compressor Face Mach Number
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8.2.2 3D VDC Inlet Model: Downstream Mach Number Perturbation

Output Response to a -3% Step in Compressor Face Mach Number
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8.2.3 2D VDC Inlet Model: Data Comparison
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2D VDC Inlet Data
Grid  Number of States Error Bound

2% x 3 312 0.43461
26 x 5 520 0.43382
26 x 7 728 0.43342
48 x 3 576 0.41472
48 x5 960 0.41449
48 x5 1344 0.41424
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8.2.4 2D VDC Inlet Model: 1D Model from 2D Averaged Data
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8.2.5 3D VDC Inlet

Model: 1D Model from 3D Averaged Data

Output Response to a —3% Step in Compressor Face Mach Number
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Figure 20: 1D Linear Model Based on 3D Averaged Data
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8.3 Matrices for Reduced Order Linear Models
8.3.1 2D VDC Inlet Model: Downstream Mach Number Perturbation

8.3.1.1 26 x3 Grid

System Matrix [A]

Columns 1 through 6

-1.0255e+002 -1.4033e+002 1.3501e+002 -8.3608e+001
2.2093e+002 -3.7917e+002 -1.1727e+003 7.5097e+002
-1.8683e+002 1.4195e+003 -4.6557e+002 6.5513e+002
1.8411e+002 -9.2390e+002 7.1603e+002 -1.2450e+003
-1.3245e+002 4.8332e+002 -8.1438e+002 2.6420e+003
1.0913e+002 -4.4412e+002 6.3725e+002 -1.6596e+003
2.2540e+001 -95.1965e+001 1.2418e+002 -3.0009e+002
~4.0438e+001 1.6202e+002 -2.2395e+002 5.5744e+002
2.1764e+001 -8.7417e+001 1.2041e+002 -2.9822e+002
2.2328e+001 -8.9731e+001 1.2412e+002 -3.0930e+002
-1.5298e+001 6.1472e+001 -8.5217e+001 2.1272e+002
4.0977e+000 -1.6449e+001 2.2830e+001 -5.7033e+001
-2.5383e+000 1.0197e+001 -1.4137e+001 3.5368e+001

.4645e+001 1.0379e+002
.9048e+002 1.0045e+002
.5007e+002 -5.5065e+002
.3700e+003 1.2228e+003
.9782e+003 ~9.0652e+002
.5833e+003 -4.3863e+003
.0327e+002 -2.1006e+003
.2103e+003 3.7847e+003
.6887e+002 -1.9898e+003
.7680e+002 -1.8642e+003
.6229e+002 1.2176e+003
.2324e+002 -3.2653e+002
.6172e+001 2.0254e+002

N RO OWRENUD W

Columns 7 through 12

1.0069e+001 4.0819e+001 -1.9063e+001 -1.9510e+001
1.1725e+002 5.8929e+001 1.6378e+001 6.1803e+001
8.9505e+001 -1.7056e+002 1.4244e+002 1.6331e+002 .7573e+001 -1.3655e+001
-3.4241e+002 3.0550e+002 -3.4980e+002 -3.7484e+002 .1328e+002 1.8785e+001
-1.0437e+003 -6.8509e+001 -4.0756e+002 -5.4782e+002 4.3561e+002 -3.0598e+001
7.7816e+002 -3.7345e+003 2.0909e+003 2.2577e+003 .3524e+002 -2.4656e+002
-4.8341e+002 -1.9894e+003 2.3277e+002 -5.6317e+002 .7657e+002 1.5314e+001
2.5063e+003 -3.9720e+003 1.5434e+002 3.2215e+003 .2781e+003 -9.7361e+002
-1.0047e+003 4.1477e+003 -1.4139e+003 -4.1516e+003 .1537e+002 5.7451e+002
-9.0363e+002 3.6098e+003 -1.6716e+003 -5.0254e+003 -2.6730e+003 2.2351e+003
6.1240e+002 -3.1572e+003 1.8972e+003 8.1878e+003 -4.3154e+003 1.9289e+002
-1.7540e+002 8.1722e+002 -5.2263e+002 -1.9743e+003 .0910e+003 -1.5182e+003
1.0903e+002 -5.0426e+002 3.4477e+002 1.2017e+003 ~1.6925e+003 3.5735e+003

.4831e+000 3.6329e+000
.7737e+001 5.8024e+000

tor o
PN

B D o N

Column 13

4.4124e-001
7.9507e+000
9.3206e+000
-2.8351e+001
-5.6142e+001
-8.3960e+000
-2.5088e+002
1.6218e+002
-3.4820e+002
-1.9747e+003
1.7715e+003
-1.9314e+003
-5.4131e+003
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Input Matrix [B]

9.6540e+002
~8.8858e+002
7.8651e+002
-8.4196e+002
6.1995e+002
-5.1694e+002
-1.0622e+002
1.9015e+002
-1.0237e+002
~1.0507e+002
7.2004e+001
-1.9283e+001
1.1952e+001

Output Matrix [C]

Columns 1 through 6
~6.7767e+002 -8.6623e+002
-6.8859e+002 2.7100e+002

Columns 7 through 12
1.2966e+002 1.1676e+002
-6.2663e+001 1.5445e+002

Column 13

9.9737e+000
-6.7083e+000

Input/Output Matrix [D]

-7.4260e+001 3.2476e+002

5.3850e+002

7.8304e+002 -7.8850e+002 -3.1708e+002

-7.9688e+000 1.3084e+001 -6.9400e+001

-1.2043e+002 -1.3748e+002

87

1.6733e+001

2.3275e+002
4.6508e+002

1.1069e+001
1.2464e+001




8.3.1.2 26 x5 Grid

System Matrix [A]

Columns 1 through 6

-1.0130e+002 -1.3867e+002
2.1620e+002 -3.7095e+002
~1.8431e+002 1.4165e+003
1.8193e+002 -9.1931e+002
1.3075e+002 -4.7567e+002
-1.0768e+002 4.3814e+002
2.6730e+001 -1.0868e+002
-4.4093e+001 1.7667e+002
9.7886e+000 -3.9404e+001
-2.1988e+001 8.8355e+001
-1.3105e+001 5.2636e+001
-1.7192e+000 6.9168e+000
4.1066e+000 -1.6513e+001
Columns 7 through 12
7.2251e+000 4.3628e+001
1.1224e+002 6.0941e+001
1.0041e+002 -1.8714e+002
~3.7172e+002 3.4665e+002
1.0192e+003 5.0733e+001
-1.0833e+003 4.0840e+003
-6.9951e+002 -1.3496e+003
2.8122e+003 -5.0362e+003
-4.1704e+002 3.3567e+003
1.0366e+003 -4.0932e+003
6.5647e+002 -3.1621e+003
9.0397e+001 -3.9964e+002
-2.1633e+002 9.5083e+002
Column 13
3.4407e+000
-1.9676e+001
, -5.0931e+001
1.0651e+002
-1.5241e+002
2.8627e+002
5.9106e+002
-1.7558e+003
9.0314e+002
~9.9978e+003
-3.3404e+003
7.7656e+003
-3.2657e+004

1.
-1.
-4,

7.

8.
-6.

1.
.4447e+002
.4141e+001
.2237e+002
.3084e+001
.5971e+000
.2911e+001

-2
5
-1
-7
-9
2

-4.

3

-2

-7
-3

-1.
.9282e+002
3.
6.
1.
.8247e+002

-2

-2

3372e+002
1746e+003
5959e+002
0664e+002
0371e+002
2956e+002
4745e+002

6580e+000

.2746e+001
7.
.4685e+002
3.
.5038e+002
.0139e+002

9812e+001

9817e+002

3600e+003

3911le+002
7849e+002
1878e+002

-8

-1

-2.
1.
~3.
6.
-1.
3.
1.
.4089e+001
.7641e+001

2
-5

1.
-7.
.6431e+002

3.
-5.
.2990e+003

1.
-4.

3.
-5.
-8.
-9.

2.

-1

2
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.4302e+001
7.
6.
.2391e+003

6559e+002
5398e+002

6390e+003
6548e+003
6009e+002
1256e+002
3411e+002
0707e+002
8373e+002

8437e+001
8357e+001

7983e+002
9550e+002

3548e+003
1973e+003
7232e+003
6575e+003
0595e+003
1242e+002
2335e+003

-3.
-4.
-5.
2.
-1.
3.
-9.
1.
~-3.
6.
3.
5.
-1.

-9.
.4084e+001
-4.

5.
.2707e+002
.5683e+002
.3993e+002
1.
7.
.2707e+003
-4.
-1.

3.

-5

-3
-4
7

3

5668e+001
9205e+002
3612e+002
3686e+003
9474e+003
5253e+003
2160e+002

3177e+003.

0788e+002
6459e+002
9430e+002
1498e+001
2292e+002

0247e+000

9668e+000
0626e+001

8419e+003
4581e+002

2062e+003
3702e+003
5142e+003

-1.
-9.
.5221e+002
.2605e+003
.9620e+002
.3559e+003
.5613e+003
.1251e+003
.7511e+002
.8396e+003
.0467e+003
.3869e+002
.3069e+002

-2

-1

0265e+002
9622e+001

.2976e+000
-7.

1.
-8.

3942e-001
0593e+001
9564e+000

.003%e+001
-1.
-8.
7.
-3.
1.
-8.
-1.
4.

6212e+002
9542e+001
1874e+002
0943e+002
2195e+003
6596e+002
6653e+003
6800e+003




Input Matrix [B]

9.5925e+002
-8.7457e+002
7.8027e+002
-8.3652e+002
-6.1544e+002
5.1305e+002
-1.2664e+002
2.0856e+002
-4.6323e+001
1.0408e+002
6.2041e+001
8.1399e+000
~1.9454e+001

Output Matrix [C]

Columns 1 through 6
-6.7501e+002 -8.6288e+002 -6.8448e+001 3.2103e+002 -5.3706e+002 -2.3012e+002
~6.8408e+002 2.7743e+002 7.7683e+002 -7.8971e+002 3.0941e+002 -4.6601e+002

Columns 7 through 12

1.2159e+002 1.2135e+002 3.0474e+001 -2.4111e+001 -6.1034e+001 -5.1730e+000
-7.4744e+001 1.7143e+002 -6.4954e+001 1.3897e+002 -1.3402e+000 -9.1019e+000
Column 13

-1.7028e+001
3.8283e+001

Input/Output Matrix [D]
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83.1.3 26 x7 Grid

System Matrix [A]

Columns 1 through 6

~1.0094e+002 -1.3798e+002
2.1573e+002 -3.7070e+002
-1.8327e+002 1.4143e+003
1.8062e+002 ~9.1530e+002
1.3007e+002 -4.7378e+002
-1.0753e+002 4.3790e+002
2.7303e+001 -1.1115e+002
~4.4105e+001 1.7693e+002
5.5409e+000 -2.2388e+001
-2.3940e+001 9.6304e+001
-1.2842e+001 5.1639e+001
~1.3565e+000 5.4588e+000
3.9972e+000 -1.6089e+001
Columns 7 through 12
7.3147e+000 4.3408e+001
1.1409e+002 5.8557e+001
1.0414e+002 -1.8876e+002
-3.9134e+002 3.5501e+002
1.0075e+003 5.1882e+001
-1.1153e+003 4.0569e+003
-7.1866e+002 -1.2480e+003
2.7725e+003 -5.1324e+003
~1.8722e+002 2.8397e+003
1.1408e+003 -4.5755e+003
6.4883e+002 -3.1493e+003
7.1734e+001 -3.2147e+002
-2.1170e+002 9.4532e+002
Column 13

3.7291e+000
-1.9685e+001
-4.8379e+001

9.9238e+001
-2.0361e+002

4.3820e+002

5.2903e+002
-1.9198e+003

6.2660e+002
-8.8375e+003

-3.7006e+003

1.9702e+003

~-3.1368e+004

1

-4

-6
1
-2
3

-1.
-7.
~7.

2

-1.
3.
6.

-2.
3.

-3.

.2944e+002

-1.

-8.

-2.
3.
4.

-1.

-3

.3332e+002
-1.
.5510e+002
6.
7.
.2659e+002
.4999%e+002
.4365e+002
.0435e+001

1756e+003

9857e+002
9585e+002

3274e+002
1353e+001
5427e+000

.2219e+001

3041e+000
3388e+001
2528e+001
1222e+002
5019e+002
9396e+002

8005e+003
9068e+001
1092e+001
1203e+002
9978e+001
5810e+002

1.
-7.
-1.

3.
-5.
.2047e+003

1.
-3.

2.
-6.
-7.
-6.

2.

2
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.4070e+001
.6819e+002
.4886e+002
.2265e+003
.6273e+003
.6508e+003
.6590e+002
.1090e+002
.4701e+001
.3332e+002
.7951e+002
.8946e+001
~-5.

5950e+001

7895e+001
1789e+001
6068e+002
7902e+002
5588e+002

3015e+003
9944e+003
8489e+003
075%e+003
6279e+003
9491e+002
1186e+003

-3.
~-4.
.2640e+002
.3685e+003
-1.

3.
-9.

1.
-1.

-5
2

7

-8.
-5.
-2.

4.

-3

8
3

-9
3

6817e+001
8668e+002

9263e+003
5024e+003
3486e+002
3110e+003
7837e+002

.1945e+002
3.
4.

-1.

8441e+002
0374e+001
1891e+002

8425e+000
368le+001
8642e+000
3260e+001

.2941e+002
-4.
7.
1.

2147e+002
1261e+002
7808e+003

.6305e+002
.0742e+003
-4.

1982e+003

.2567e+002
.3551e+003

-1

-9.
.5463e+002
.2827e+003
-8.
-4.

2.
-4,

4.
-2.
.0273e+003
-1.
.2262e+002

5
-1

-1

3

-2,
-1.

9.
-2.
-5.
-2.
-6.

7.
-2.

1.
.4632e+002

-9

-1.
.1491e+003

5

.0216e+002

5743e+001

9618e+002
3563e+003
6306e+003
1186e+003
9365e+002
0037e+003

0956e+002

4964e+000
9640e+000
1749e+000
8165e+000
1386e+000
0042e+002
5397e+001
9735e+002
2395e+002
1337e+003

0687e+003



Input Matrix [B]

9.5738e+002
-8.7445e+002
7.7681le+002
-8.3179e+002
-6.1311e+002
5.1318e+002
-1.2957e+002
2.0897e+002
-2.6269e+001
1.1351e+002
6.0896e+001
6.4309e+000
-1.8967e+001

Output Matrix [C]

Columns 1 through 6
-6.7403e+002 -8.6047e+002
~6.8243e+002 2.7756e+002

Columns 7 through 12
1.2373e+002 1.1940e+002
-7.7027e+001 1.728le+002

Column 13

-1.5488e+001
4.1400e+001

Input/Output Matrix [D)]

(o]

-6.7453e+001
7.7503e+002

3.6240e+001
-4.8324e+001

3.2312e+002 -5.3624e+002 -2.2718e+002
-7.9089e+002 3.0228e+002 -4.6766e+002

-2.3144e+001 -5.9665e+001 -6.7813e+000
1.3570e+002 -1.8189e+000 -9.3922e+000
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8.3.1.4 48 x 3 Grid

System Matrix [A]

Columns 1 through 6
0483e+002 -1.9628e+002

~-1.
.5622e+002
.3583e+002

1.
-1.

1.
-5.
-8.
~-5.
-1.

2
-2

-2

5793e+002
6230e+002
3473e+002
8742e+000
1706e+001
0294e+001
8189e+001

.2756e+001
1.
6.

4650e+001
4721e+000

-2.

1.
.2051e+002

4.
-4,
.8187e+001
.3803e+002
.4895e+002
.3657e+001
.7384e+001
.3277e+001
.9292e+001

-5

PR aURNDRE

8724e+002
4265e+003

0304e+002
2055e+002

Columns 7 through 12
8.8381e+001

9.
-5.
.4053e+002

1.

5.
-7.

-1

-1

-1
-1

6708e+000
5568e+001

8357e+002
1149e+002
9759%e+002

.4526e+001
-2,
3.

1361e+003
8276e+001

.3928e+002
.2722e+002
8.
1.

1512e+001
1508e+001

Column 13

-3

-1

3
-1

5
-4

.2506e+000
1.
6.

-1.

.4504e+002

-1.
6.
8.

0952e+001
8427e+001
2273e+002

1634e+001
2712e+002
9129e+002

.0751e+003
.3937e+003
1.

1527e+003

.3541e+003
.2265e+002

1.
.2539e+002
.4622e+002
1.
.2275e+003

1.
-2.
-3.
~-1.
-1.

1.
.4335e+002

-2
4

-4

4

0082e+002

5517e+002

8236e+003
7675e+003
1697e+003
5628e+003
9778e+003
0234e+003

1.
-1.
.2074e+002

5.
-1.

7.
.4751e+001
-3,
.4552e+002
.0158e+001

-5

-2

-2
-9

-1.
.2654e+001
.2306e+001

7
3

2608e+002
2499e+003

1647e+002
0421e+003
1668e+002

9587e+002

1268e+002

.8703e+001
.0002e+002
.9719e+002
.9332e+002
.7505e+002
.5345e+003
.6998e+002
.5346e+002
.7704e+003
.5625e+003
.6405e+003
.8274e+003
.3170e+002

i

1

[
0 = BRERPRWOWENDUOR N R

1
[ ®2]

OOURENNRP R o
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.0084e+002
.7453e+002
.7068e+002
.5848e+002
.3818e+003
.2319e+003
.2393e+001
.8413e+002
.6853e+002
.3775e+002
.7121e+002
.1063e+002
.8944e+001

.7045e+001
.7755e+000
.8658e+001
.2578e+002
.8372e+001
.5363e+002
.6516e+002
.4433e+003
.8469%9e+003
.8863e+002
.5949e+003
.8400e+002
.6116e+002

-3.
.4945e+001
.9830e+001
.6875e+001
.5213e+000
.2998e+003
.5397e+001
.1795e+003
.3216e+003
.5229e+003
.4218e+003
.2969e+003
.2048e+003

| 1
[0 V-]

FPOHBWWR P P

.2454e+001
.4786e+002
.9519e+002
.2011e+003
.2281e+003
.5626e+003
.4856e+002
.2593e+003
.0614e+002
.8291e+002
.4955e+002
.2303e+002
.8268e+001

6775e+001

-5

-2

.3399e+002
.3388e+002
.6918e+002
.3637e+002
.1625e+003
.2635e+003
.2708e+002
.8865e+003
.8197e+003
.6571e+002
.9668e+002
.8167e+002
.1911e+002

.7547e+001
.7994e+001
.8108e+002
.7848e+002
5.
.3892e+002
~-1.
.7789e+003
~-7.

2.
-1.
~-9.
-8.

9753e+002
5606e+003

1778e+003
9258e+003
5476e+003
1383e+003
5998e+003




Input Matrix [B]

.9631e+002
.2447e+002
.9931e+002
.0536e+002
.6353e+002
.5291e+002
.7642e+001
.8592e+002
.3861e+002
.6305e+001
.0810e+002
.9656e+001
.0899%e+001

i
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Output Matrix [C]

Columns 1 through 6

-6.8180e+002 -9.3312e+002 -4.1095e+002 1.1514e+002

-7.2794e+002 1.3294e+002

Columns 7 through 12

8.9597e+002 -6.7167e+002

-7.501%e+001 2.2344e+002 -1.0630e+002 -4.2305e+001

1.3009e+002 3.5647e+002
Column 13

2.6625e+001
-5.1848e+001

l Input/Output Matrix [D]

o

2.7348e+002 -6.5985e+001

63

6.9145e+002
-4.7058e+002

-1.4597e+002
-1.0972e+002

3.9987e+002
5.2363e+002

-4.4552e+001
1.6872e+002



8.3.1.5 48 x5 Grid

System Matrix [A]

Columns 1 through 6

~1.0455e+002 -1.9623e+002
2.4939%9e+002 -2.7304e+002
-2.3701e+002 1.4268e+003
1.6106e+002 -5.1776e+002
~-1.6248e+002 3.8723e+002
1.3445e+002 -4.1173e+002
-2.1338e+001 5.9735e+001
7.5448e+001 -2.1514e+002
-4.6193e+001 1.3427e+002
3.6405e+001 -1.0590e+002
-2.1556e+000 6.5082e+000
1.3818e+001 -4.0038e+001
~7.3590e+000 2.1405e+001
Columns 7 through 12
1.8045e+001 -8.8483e+001
9.4530e+001 -1.2600e+002
8.5641e+001 2.6765e+002
-8.1814e+001 -5.5609e+002
-4.6196e+002 -4.6918e+002
~5.0774e+002 4.3305e+003
~1.8170e+002 2.7981e+003
-1.2323e+003 -2.4868e+003
-8.3553e+002 2.6807e+003
7.5695e+002 -3.0490e+003
-9.3351e+001 9.2561e+001
2.2026e+002 -9.5159e+002
-1.3483e+002 4.5876e+002
Column 13
5.5730e+000
~1.5162e+001
, -6.1750e+001
9.8114e+001
1.0258e+002
-4.2661e+001
4.0652e+002
1.3328e+003
-3.0297e+003
~5.2930e+002
-1.5980e+003
~-4.7722e+003
3.4494e+003

1

-1.
.2322e+002
.3116e+002

-5
5

-1.
7.
-1.
3.
.2532e+002
1.
-1.
6.
-3.

-2

.2796e+002

2457e+003

0488e+003
1160e+002
0788e+002
6488e+002

8048e+002
0495e+001
8588e+001
6831e+001

.2974e+001
.2547e+001
.0785e+002
.4131e+002
.0296e+002
.7812e+003
.6803e+002
.2563e+002
.2497e+003
.2248e+003
.5412e+002
.5415e+003
.2494e+002

-3
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.0679e+002
.6547e+002
.7425e+002
.8328e+002
.4369e+003
.2488e+003
.6919%e+002
.4693e+002
.4517e+002
.8175e+002
.6038e+001
.0712e+002
.7324e+001

.4044e+001
.7920e+001
-7.
.6144e+001
-2,
-1.
.2331e+002
.9132e+003
.4683e+003
-2.
-2.
-2.
.6582e+003

4962e+000

1406e+002
1103e+003

5891e+003
2558e+003
2074e+003

!
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.8222e+001
.8648e+002
.0004e+003
.1959e+003
.2197e+003
.5172e+003
.6683e+002
.1850e+003
.3878e+002
.5866e+002
.3701e+001
.0881e+002
.1005e+002

.0968e+001
.1126e+002
.1002e+002
.9207e+001
.4286e+002
.5584e+002
.1974e+002
.7243e+002
.2280e+003
.5829e+003
.2950e+001
.2164e+002
.8144e+002

3
-7

.3286e+002
.2737e+002
.2782e+002
.0265e+002
.1346e+003
.2774e+003
.6235e+002
.6783e+003
.7351e+003
.1426e+003
.1640e+001
.5851e+002
.5131e+002

.5509e+001
.8768e+001
-1.
2.
5.
~3.
1.
.3454e+003
.4550e+003
-2.
-2.
-8.
1.

7561e+002
556%e+002
1793e+002
5196e+002
1448e+003

7171e+002
4987e+003
4456e+003
0547e+004




Input Matrix [B]

9.9516e+002
-8.9662e+002
1.0041e+003
-7.1895e+002
7.6645e+002
-6.5235e+002
1.0104e+002
-3.5682e+002
2.1942e+002
-1.7330e+002
1.0295e+001
-6.5821e+001
3.5145e+001

Output Matrix [C]

Columns 1 through 6
-6.8178e+002 ~-9.4470e+002 -3.9999e+002 9.1059e+001 6.8014e+002 4.0995e+002
-7.2780e+002 1.4996e+002 8.9168e+002 -6.7764e+002 -4.7990e+002 5.1178e+002

Columns 7 through 12

1.5453e+002 -2.0383e+002 ~8.8999e+001 1.5096e+002 -1.1461e+002 -5.8842e+001
-2.7551e+001 -3.8939e+002 2.8982e+002 8.4253e+001 1.0722e+001 1.6015e+002
Column 13

-1.8861e+001
5.3164e+001

' Input/Output Matrix [D]
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8.3.1.6 48 x 7 Grid

System Matrix [A]

Columns 1 through 6

-1.0409e+002 -1.9907e+002
2.4836e+002 -2.6835e+002
~2.3417e+002 1.4292e+003
1.5853e+002 -5.1215e+002
-1.6412e+002 3.9156e+002
1.3282e+002 -4.0580e+002
-6.9811e+001 1.9870e+002
5.7087e+001 -1.6083e+002
-4.7621e+001 1.3787e+002
~3.0830e+001 8.8913e+001
-1.2461e+001 3.6196e+001
-1.7659e+001 5.0840e+001
3.8254e+000 -1.1058e+001
Columns 7 through 12
6.5031e+001 -5.7400e+001
5.3521e+001 -1.4669e+002
-2.7061e+002 4.4545e+001
5.4572e+002 -2.1265e+002
"5.9517e+002 1.9508e+002
-3.3884e+003 2.4739%e+003
-1.8312e+003 -3.2676e+002
3.2844e+003 -1.3877e+003
-2.0740e+003 2.4228e+003
-2.0697e+003 1.9727e+003
-5.7788e+002 6.7734e+002
~9.4256e+002 8.6056e+002
1.9036e+002 -1.8292e+002
Column 13
-1.2417e+001
2.1396e+001
, 1.2171e+002
-1.9983e+002
-2.4419e+002
2.0158e+002
1.4490e+003
-1.3702e+002
4.8391e+003
-7.6598e+003
5.0499e+003
-1.4888e+004
6.6320e+003

1.
-1.
.7571e+002
.5902e+002

9.
-1.
-1.
-2.
-2.
-4,
-6.
-2,

-2
3

4

.2492e+002
.2575e+003
.0954e+002
.0959e+002
.0466e+003
.9360e+002
.3085e+002
.7634e+002
.2965e+002
.5121e+002
.0560e+001
.6416e+001
.9034e+001

5414e+001
2756e+002

1517e+002
1191e+003
3111e+003
5450e+002
5366e+003
9978e+003
3573e+002
0691e+003

.4304e+002

BN= W w

-4.
=7.
1.
-2.
-1.
1.
2.
-2.
3.
-1.
2.
-2.
1.
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.1088e+002
.8630e+002
.7450e+002
.6875e+002
.4773e+003
.2409e+003
.9540e+002
.2284e+002
.5650e+002
.3932e+002
.4811e+001
.3609e+002
.9548e+001

1640e+001
5931e+000
4344e+002
6316e+002
9123e+002
6542e+003
6818e+003
4940e+003
7422e+003
9697e+003
8427e+003
5017e+003
0769e+003

2.

4.

9.
-2
-1

2
-1.
8.
-7
-4.
-1.
-2.
5.

9894e+001
5674e+002
9335e+002

.1924e+003
.2193e+003
.4404e+003

1131e+003
3062e+002

.5180e+002

6115e+002
9195e+002
6390e+002
6577e+001

.1395e+001
.2589e+002
.2242e+002
.4182e+001
.4736e+002
.6784e+002
.1243e+002
.4361e+002
.8956e+003
.1339e+003
.3431e+002
.5847e+003
.0643e+002

~-1.
.5567e+001

8.
-1.
-3.

3.

1.
-9.
.4725e+003
-4.
.4845e+003
.2850e+003
4.

2

3

2
-9

.3320e+002
.5421e+002
.3624e+002
.5962e+002
.0894e+003
.2563e+003
.4127e+003
.6048e+003
.7062e+003
.3352e+002
.0328e+002
.9107e+002
.3604e+002

1287e+001

9461e+001
6091e+002
0721e+002
9405e+002
0956e+003
1853e+001

3988e+003

8257e+003




Input Matrix [B]

9.9293e+002
-8.8926e+002
9.9478e+002
-7.0708e+002
7.7543e+002
-6.4590e+002
3.3104e+002
~-2.7082e+002
2.2690e+002
1.4710e+002
5.9450e+001
8.4334e+001
1.8368e+001

Output Matrix [C]

Columns 1 through 6
~-6.8252e+002 -9.4337e+002 -4.1131e+002
-7.2855e+002 1.4783e+002 8.9199e+002

Columns 7 through 12
9.3072e+001 ~-2.3150e+002 -1.4495e+002
3.4574e+002 -1.6555e+002 2.3060e+002

Column 13

3.6269e+001
-1.1410e+002

Input/Output Matrix [D]

0
0

8.2356e+001

6.7933e+002

-6.8364e+002 -4.6891e+002

-7.8913e+001 -1.3905e+002

-1.8832e+002
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3.4148e+001

4.0654e+002
5.1561e+002

2.2953e+001
-9.9862e+001




8.3.2 3D VDC Inlet Model: Downstream Mach Number Perturbation

8.3.2.1 15x3x3 Grid

System Matrix [A]
Columns 1 through 6

-8.9089e+001 -2.8477e+002
2.9149e+002 -4.0097e+002
~1.4482e+002 8.2662e+002
3.2395e+001 -1.2348e+002
-1.0587e+002 4.1102e+002
3.9694e+001 -1.5959e+002
4.3595e+001 -1.6895e+002
-2.1687e+001 8.4185e+001
1.3773e+001 -5.3478e+001
-1.1264e+001 4.3730e+001
5.3664e+000 -2.0851e+001
-6.7474e+000 2.6213e+001
1.6037e+000 -6.2298e+000
-1.2031e+000 4.6735e+000
-4.0208e-001 1.5620e+000
~-3.3726e-001 1.3101e+000
3.0765e-001 -1.1951e+000
Columns 7 through 12
~1.9546e+001 8.4557e+000
~2.7240e+001 8.5437e+000
2.1635e+002 -1.1723e+002
-1.8545e+002 9.5964e+001
-1.2541e+003 5.9512e+002
1.0853e+003 -3.7373e+002
-2.1997e+003 1.5421e+003
1.5388e+003 -1.2908e+003
-1.5335e+003 2.1500e+003
1.1549e+003 -1.4212e+003
' -5.4566e+002 6.4794e+002
6.8607e+002 -8.1534e+002
-1.6192e+002 1.9075e+002
1.2151e+002 -1.4326e+002
4.0631e+001 -4.7967e+001
3.4040e+001 -3.9972e+001
-3.1072e+001 3.6597e+001
Columns 13 through 17
-1.5649e+000 1.4593e+000
-5.5232e+000 4.8371e+000
~1.7775e+000 -3.6660e-001
-4.1420e+000 5.0086e+000
-1.4186e+001 2.0580e+001
4.2598e+001 -3.9931e+001
-9.5518e+001 1.1678e+002
1.0522e+002 -1.4183e+002
-3.0088e+000 -7.9331e+001
4.4558e+002 -3.4288e+002
9.7643e+002 -8.3997e+002
-3.2367e+003 3.2056e+003
-3.6401e+003 5.9916e+003
4.0288e+003 -8.3056e+003
2.0885e+003 -7.5987e+003
1.5413e+003 -5.7425e+003
~1.3061e+003 4.0209e+003

~-5.
.3537e+000
-2.
-9.
3.
1.
-4.
6.
-9.
2.
3.
-8.
-2.
5.
-1.
-7.
2.

-2

.1694e+001
.5305e+002
.4169e+002
.9769e+002
.4458e+002
.8944e+002
.1327e+002
.5718e+002
.0076e+002
.2295e+001
.9162e+001
.9248e+001
.1705e+001
.7810e+000
.9351e+000
.4603e+000
.2452e+000

.6019e+000
.4834e+001
.9812e+001
.0899%e+001
.4117e+002
.3420e+001
.2776e+003
.9337e+003
.9758e+003
.7745e+003
.6890e+003
.9103e+003
.6009e+002
.4526e+002
.1557e+002
.6734e+001
-8.

8326e+001

5831e-001

9280e+000
2137e-002
9183e+000
3587e+001
4895e+000
0799e+000
5073e+001
3974e+002
5764e+002
5378e+002
5077e+003
3972e+003
8870e+003
0291e+003
5996e+003

-1

5

-7

-1

9.
4.
6.
-1.
-1.
=2.
-2.

5

~4

-2

1
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.4626e+001
~7.

9.
-7.

1.
-2.
-1.

9.
-6.
.0883e+001
-2.

3.
.2391e+000
5.
1.
1.

6740e-001
9530e+001
1802e+001
0870e+003
1048e+002
8525e+002
5383e+001
2517e+001

4234e+001
0470e+001

4311e+000
8147e+000
5216e+000

.3885e+000

0706e+000
1180e+001
7762e+001
0573e+001
3407e+002
2376e+002
6957e+002

.3048e+002
8.
-2.
3.
~-2.
6.
-4.
-1.
-1.
1.

0054e+002
3123e+003
1305e+003
9995e+003
5408e+002
9150e+002
6386e+002
4433e+002
2768e+002

.2748e-001
-1.
-7.
-9.
-2.

1.

5652e+000
8528e-001
2730e-001
5391e+000
1078e+001

.2706e+001
2.
-1.

9167e+001
2709e+001

.3096e+002
2.
-8.
-1.
2.
2.
2.
-1.

5426e+002
5345e+002
9577e+003
5718e+003
6544e+003
1499e+003
4804e+003

-1

1

-6.

3.
-2.

1.
-1.
.2844e+001
.2139e+001

4
-3

-1.
.0137e+000
8.

-9
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.5213e+001
2.
8.

-1.

-1.
1.

.2994e+003

1118e+001
6629%9e+002
0769e+003
4188e+003
1077e+003

0640e+002
638le+002
9995e+002
4336e+002
8017e+002

07339e+001

2194e+000

.3139e+000
.0660e+001
.8274e+001
.5951e+000
.5380e+000
.3792e+002
.7595e+002
.8416e+002
.2780e+002
.9372e+003
.6625e+003
.3137e+003
.0364e+003
.5270e+002
.4338e+002
.183%e+002
.9278e+002

.4646e+000
.0649e+000
.3497e+000
.9436e+000
.9295e+001
.1809e+001
.8336e+002
.3211e+002
.8491e+002
.6351e+002
.5737e+002
.9281e+003
.4874e+003
.0405e+004
.1980e+004
.2744e+004
.1146e+004

1

-1

6

3

-1

3

-8

-6.
.9513e+001

5.
-2.
.0364e+002
.7364e+002
.4335e+002
.1092e+002
.4747e+002
.7109e+003
.1396e+003
.3908e+003
.3619e+003
.3743e+003
.6408e+002
.0228e+002
.7996e+002

-1

3.9396e+001
1.
3.6901e+001
.4102e+002
-1.
-5.
.4850e+003
.2848e+002
-3.
.0688e+002
.4346e+002
1.
-4.

4638e+002

0237e+002
3801e+002

7131e+002

8097e+002
3122e+001

.2343e+001
1.
9.

0804e+001
0699e+000

.2703e+000

1248e+000

5233e+000
3554e+001



Input Matrix [B]

9.2761e+002
-1.0753e+003
7.7323e+002
-1.6571e+002
5.5326e+002
-2.0849e+002
-2.2685e+002
1.1292e+002
-7.1737e+001
5.8665e+001
-2.7953e+001
3.5146e+001
-8.3533e+000
6.2665e+000
2.0943e+000
1.7566e+000
-1.6024e+000

Output Matrix [C]

Columns 1 through 6
-6.2033e+002 -9.1893e+002
-6.8972e+002 -5.5828e+002

Columns 7 through 12
8.3295e+001 -4.8461e+001
-2.1101e+002 1.0260e+002

Columns 13 through 17

-4.3743e+000 2.9658e+000
-7.0344e+000 7.5784e+000

Input/Output Matrix [D)]

-2.
-1.

.1167e+002
.0226e+002

.1499%e+001
.7078e+001

8631e+000
3482e+000

-1.
-1.

69

.5604e+001
.5240e+002

.7470e+001
.1810e+001

3750e+000
7679e+000

N

-2.
-1.

.4451e+002
.3299e+002

.1684e+001
.7691e+001

0617e-001
0116e+001

1.1812e+002
1.7196e+002

-1.0069e+001
-3.3818e+001



8.3.2.2 20 x3x3 Grid

System Matrix [A]

Columns 1 through 6

-8.0831e+001 -2.3762e+002
2.4335e+002 -4.0768e+002
-1.2008e+002 8.2492e+002
4.9785e+001 -2.3172e+002
-8.9752e+001 3.989%94e+002
4.4009%9e+001 -2.0361e+002
3.5981le+001 -1.6012e+002
-2.6242e+001 1.1707e+002
7.8240e+000 -3.4927e+001
~1.3911e+001 6.2035e+001
4.1429e+000 -1.8490e+001
-6.4412e+000 2.8742e+001
1.5951e+000 -7.1165e+000
~1.1163e+000 4.9805e+000
3.9209e-001 -1.7494e+000
-5.0634e-001 2.2591e+000
9.4549e-002 -4.2184e-001
Columns 7 through 12
~1.6391e+001 7.8957e+000
-2.8012e+001 1.6930e+000
1.7546e+002 -1.5057e+002
-2.1594e+002 1.6919e+002
-1.0392e+003 7.3341e+002
1.2189e+003 -6.4558e+002
-1.5809e+003 1.5800e+003
1.6258e+003 -1.9511e+003
-8.0071e+002 1.7172e+003
1.2549e+003 -2.2654e+003
-3.6853e+002 6.2851e+002
5.6952e+002 -9.6798e+002
-1.4027e+002 2.3737e+002
, 9.8165e+001 -1.6595e+002
~3.4460e+001 5.8257e+001
4.4519e+001 -7.5260e+001
-8.3254e+000 1.4078e+001
Columns 13 through 17
-1.2932e+000 8.8110e-001
-6.6970e+000 2.9214e+000
-9.0156e+000 -2.7423e+000
4.5313e+000 5.4978e+000
2.0322e+001 2.1075e+001
1.9609e+001 -3.1577e+001
2.1608e+001 8.8711le+001
-7.5223e+001 -1.3838e+002
~3.1195e+001 -1.4075e+002
8.3095e+002 -4.7256e+001
6.2929e+002 -4.3347e+002
-2.6414e+003 2.4026e+003
-2.3172e+003 4.1506e+002
3.2785e+003 -7.3598e+003
-1.0364e+003 -5.7799e+002
1.4858e+003 -6.2448e+003
-3.0408e+002 -5.2502e+001

.4279e+001
.5485e+002
.3398e+002
.6493e+002
.7778e+002
.2216e+002
.5023e+002
.8412e+002
.5503e+001
.8554e+001
.9308e+001
.5573e+001
.1284e+001
.8977e+000
.7738e+000
.5820e+000
.6911e-001

.5453e+000
.3881e+000
.9959e+001
.0304e+001
.9522e+002
.7947e+002
.0407e+002
.7080e+003
.3548e+002
.0025e+003
.3716e+002
.4994e+002
.1770e+002
.5333e+002
.3606e+001
.9220e+001
.3171e+001

.4053e+000
.017%e+000
.6890e+000
.9861e+000
.6298e+001
.5523e+001
.2143e+002
.9599e+002
.0121e+002
.7463e+002
.9859%e+002
.7595e+003
.7694e+003
.8380e+004
.5993e+003
.5030e+003
.5795e+003

-1.
.5546e+001
.9499e+002
.6325e+002
.0881e+003
.4777e+002
.2643e+002
.6992e+002
.2264e+001
.2402e+001
-2.

4.
-1.

7.
-2.

3.
-6.

9

-2
-3

-3

2
-2

5.

1006e+001

7469%9e+001
2704e+001
0573e+001
3986e+000
5990e+000
3557e+000
2672e-001

.4518e+000
5.
8.

-5.

-2.

-1.

-5.
1.

.2080e+002

.7971e+003

3.

.7259e+003
8.

-6.

.1403e+002

.7722e+002

3172e+001
9316e+001
6047e+001
3762e+002
0137e+002
0530e+002
3627e+003

1795e+003
5394e+002

0817e+002

0869e+001

.3677e-001
.7242e-001
.1457e+000
.7291e+000
.8847e+001
.5061e+001
.3272e+001
.1335e+002
.0326e+002
.9110e+002
.3583e+002
.0895e+003
.6328e+002
.2113e+003
.3101e+002
.1786e+004
.6536e+003
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-9

1
-7

-3
1

.3918e+000
3.
7.

-1.

-1.
1.

0660e+001
2874e+002
0878e+003
2054e+003
0986e+003

.0898e+003
.4159e+002
2.

0636e+002

.7090e+002
.1095e+002
-1.

4.
-2.
.0505e+001
.3564e+001
.5326e+000

7250e+002
2728e+001
9905e+001

.1806e+000
.7608e+001
.6169e+000
.0994e+000
.8842e+001
.0716e+002
.8952e+002
.4338e+002
.9028e+002
.5941e+003
.5163e+002
.2666e+003
.7236e+002
.1506e+002
.8322e+002
.3313e+002
.2669e+001

.2074e-001
.0624e+000
.0549e+000
.9265e+000
.4973e+001
.1823e+001
.3606e+001
.0600e+002
.0581e+002
.5657e+001
.1492e+002
.7664e+003
.8216e+002
.9025e+003
.3418e+002
.6370e+003
.8574e+002

3.
1.

-9

8

1
-4
3

1

~6.
-2.
2.
-2.
-8.
1.

-4

6

-2

8519e+001
4726e+002

.0741e+001
2.
1.

-6.

-1.

5794e+002
9803e+002
394%e+002
3591e+003

.2990e+002
-2.

4.
-1.
.8520e+002
.5956e+001
.2154e+001
~-1.

1880e+002
0243e+002
1872e+002

1297e+001

.4585e+001
~-2.

7223e+000

0721e+000
3139e+001
1882e+000
1821e+001
0148e+001
8433e+002

.2139e+002
6.
.0454e+002
1.
2.
-6.
3.
.4785e+003
8.
-1.
2.

0204e+002

7795e+003
0955e+003
9498e+003
9212e+003

8212e+002
0918e+003
1244e+002



Input Matrix [B]

8.6027e+002
-9.7457e+002
6.5451e+002
-2.6276e+002
4.7994e+002
-2.367%9e+002
-1.9174e+002
1.3995e+002
-4.1738e+001
7.4189e+001
-2.2095e+001
3.4352e+001
-8.5060e+000
5.9528e+000
-2.0909%e+000
2.7001e+000
-5.0419%e-001

Output Matrix [C]

Columns 1 through 6
~5.9238e+002 -8.4183e+002
-6.2388e+002 -4.9035e+002

Columns 7 through 12
6.4280e+001 -6.8326e+001
-1.8064e+002 1.2258e+002

Columns 13 through 17

-8.3285e+000 5.8599e-001
-1.5866e+000 5.9150e+000

Input/Output Matrix [D]

~1.
-8.

.8859e+002
.8578e+002

.4187e+001
.9477e+001

9637e+000
4767e+000

.5571e+002
.1171e+002

.4199e+001
.0981e+000

.7740e+000
.4320e+000
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1.

-3.
-4.

.0401e+002
.7135e+002

.4560e+001

6838e+001

7570e-001
2146e+000

5.9407e+001
2.2936e+002

-1.3534e+001
-3.1703e+001



8.3.3 1D Model from 2D Averaged Data

System Matrix [A]

Columns 1 through 6

-9.

-2

8584e+001

.8000e+002
-3.
-2.
-8.

1.
-1,

1.
-1.

1.
-8.
-1.
-4.

0312e+002
4737e+002
8897e+001
5402e+002
6297e+002
6455e+002
0043e+002
6757e+001
3077e+001
0901e+000
8729e+001

2

-2
-2
-2

-1

-8

.4455e+002
-1.
-1.

4186e+002
5407e+003

.4315e+002
.2576e+002
3.

8103e+002

.3407e+002
2.
.6631e+002

2.
-1.
-5.
.4991e+001

9834e+002

6745e+001
4773e+002
9525e~001

Columns 7 through 12
2185e+002 -4.4489e+001

1.
-2.
4.
-5.
2.
-3.

-8
3

1

3521e+002
6027e+002
6916e+002
8608e+002
2350e+003

.7731e+002
.4071e+003
-8.
.3322e+002
-1.
-1.
~-5.

9785e+002

0200e+003
2556e+001
6226e+002

Column 13

4

.9590e+001
-6.
-1.
-1.
1.
-2.
-5.
7.
3.
8.
4.
-6.
-2.

2108e+001
1102e+002
9024e+002
3820e+002
7672e+002
0154e+002
0727e+002
5872e+002
7032e+002
3775e+003
5665e+003
0530e+003

-2.
5.
~-6.
-4.
8.
-3.
-1.
4.
-6.
2.
-4,

1

0590e+002
0430e+002
0448e+002
4595e+002
7985e+002
0424e+003
9011e+003
5798e+003
0813e+002
1877e+003
6541e+001

.0281e+003

1.
1.
-3.
-1.
.2326e+002
6.
-5.
4.
.4549e+002
5.
.7794e+002
-2.
-1.

-6

-3

-2

6793e+002
4511e+003
9981e+002
3903e+003

8001e+002
9834e+002
9248e+002
4938e+001

6441e+000
6060e+002

.7052e+001
-1.
.1377e+002
-4.
-3.
-3.
.0788e+002
-4.
-1.
.7031e+002
.3635e+003
-1.
~-1.

5972e+002

0688e+002
5490e+001
6715e+002

4534e+003
4257e+003

4002e+002
7322e+003

2.
.4207e+002

1.
-4.
.2527e+003
.6473e+003
~5.
.7442e+002
.4008e+002

6.
-4.
.7015e+000

-2

-2
1
8

-4

-3

~-2.

-2.

4.
.2673e+001
.4473e+002

-4
1

~-5.
.2932e+002
.0846e+002
.5000e+002
.4204e+002
.4059%e+001
.9685e+003
.7375e+002
.3388e+002

N WWwa oW W

0341e+002
2190e+003
8376e+002
5400e+002
8069%e+001
1020e+002

3313e+002

8182e+001
8691e+001

1368e+001
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3

-5.

5.
-2.

4.
.3463e+002
-1.
-1.

-2

-8.
1.
.7896e+001
3.
-1.
8.
6.
-6.
2.

2

-4

-2.
-2.
-3.

.1015e+001
.2358e+002
.6456e+002
.0570e+003
-1.

4243e+002

.4002e+002

3727e+002
3415e+002
7518e+002
7297e+001

6848e-001
2837e+002

6517e+001
0008e+002

0481e+002
9536e+002
4099e+002
7582e+002
2777e+002
5041e+003

.4839%e+003

1793e+003

1985e+002

9973e+003

1.
-3.
-3.
-1.

2.
-6.
.2588e+003
-1.

8.
-1.

6.

1.

3.

3

7131e+002
4936e+002
5812e+002
6233e+003
3804e+002
8877e+002

5768e+003
5709e+002
6234e+002
1397e+002
3009e+001
8545e+002

.1196e+001
.7938e+001
.2451e+002
.1453e+001
.0668e+001
.5436e+002
.5670e+002
.0295e+002
.0311e+002
.3094e+002
.0737e+003
.4654e+002
.1347e+003



Input Matrix [B]

.7210e+002
.0536e+002
.1889e+003
.0025e+003
.0362e+002
.5236e+002
.6198e+002
.0286e+002
.9182e+002
.0081e+001
.1501e+002
.5179e+000
.3900e+002

NWd R 0JoWUNE WY

Output Matrix [C]

Columns 1 through 6
~-6.3659e+002 8.1445e+002 -7.0900e+002 1.0345e+003 -7.9062e+001 6.4761e+002
_7.3606e+002 6.3800e+000 9.6624e+002 6.2264e+001 -5.0451e+002 6.9652e+002

Columns 7 through 12

8.0468e+002 4.8980e+002 4.5218e+002 -1.6378e+002 -3.0209e+002 -6.4401e+001
-3.4003e-002 -6.5999e+002 -2.3037e+002 ~3.8097e+001 -2.9737e+002 1.9047e+002
Column 13

1.2770e+002
2.3890e+002

Input/Output Matrix [D]
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